Skip to main content
Erschienen in: Colloid and Polymer Science 12/2011

01.08.2011 | Invited Review

Hyperbranched polymers meet colloid nanocrystals: a promising avenue to multifunctional, robust nanohybrids

verfasst von: Xiaozhen Hu, Li Zhou, Chao Gao

Erschienen in: Colloid and Polymer Science | Ausgabe 12/2011

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Colloid nanocrystals (NCs) mainly include metal nanocrystals, semiconductor nanocrystals, and insulator nanocrystals, exhibiting interesting size-dependent electrical, optical, magnetic, and chemical properties that cannot be achieved by their bulk counterparts. However, there’s a critical problem that NCs tend to aggregate, which induces degradation of their performance. Hyperbranched polymers (HPs) possess excellent attributes of three-dimensional topology, low viscosity, good solubility, and plenty of modifiable terminal groups. The combination of NCs and HPs to form nanohybrids cannot only endow NCs with multifunctionality, uniform dispersibility, and splendid solubility but also can impart extra properties to HPs. This article reviews the recent progress and state-of-the-art of the synthesis and applications of NCs-HPs nanohybrids (NHBs). NHBs can be obtained by three approaches: HPs first (i.e., NCs are formed with the stabilizer of HPs), NCs first (i.e., HPs are grafted on the surface of as-prepared NCs), and ligand exchange (the original ligand of NCs is replaced with HPs). Various HPs including hyperbranched poly(amidoamine), polyethylenimine, polyglycerol, polyester, polyamide, polyurethane, and poly(3-ethyl-3-hydroxymethyloxetane), as well as sorts of NCs such as metals (e.g., Ag, Au, Pd, Pt, and Rh), quantum dots (e.g., ZnO, CdS, CdTe, CdSe, and SnO2), magnetic oxides (e.g., Fe3O4), rare earth compounds, and so forth, have been used to obtain NHBs. The NHBs can be applied in nanocatalysis, antimicrobia, biosensor, biological labeling, and other fields promising their bright future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotech vol:634–641 Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotech vol:634–641
2.
Zurück zum Zitat Finke RG, Feldheim DL, Foss CA (2002) Metal nanoparticles: synthesis, characterization, and applications. Marcel Dekker, New York Finke RG, Feldheim DL, Foss CA (2002) Metal nanoparticles: synthesis, characterization, and applications. Marcel Dekker, New York
3.
Zurück zum Zitat Fahlman BD (2007) Materials Chemistry. Springer, Mount Pleasant, pp 282–283CrossRef Fahlman BD (2007) Materials Chemistry. Springer, Mount Pleasant, pp 282–283CrossRef
4.
Zurück zum Zitat Yin YD, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670CrossRef Yin YD, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670CrossRef
5.
Zurück zum Zitat Elsayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37:326–333CrossRef Elsayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37:326–333CrossRef
6.
Zurück zum Zitat Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Gros MAL, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15–R27CrossRef Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Gros MAL, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15–R27CrossRef
7.
Zurück zum Zitat Michalet X, Pinaud FF, Bentolila LA, Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRef Michalet X, Pinaud FF, Bentolila LA, Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRef
8.
Zurück zum Zitat Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRef Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRef
9.
Zurück zum Zitat Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391:2469–2495CrossRef Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391:2469–2495CrossRef
10.
Zurück zum Zitat Wang DS, Xie T, Li YD (2009) Nanocrystals: solution-based synthesis and applications as nanocatalysts. Nano Res 2:30–46CrossRef Wang DS, Xie T, Li YD (2009) Nanocrystals: solution-based synthesis and applications as nanocatalysts. Nano Res 2:30–46CrossRef
11.
Zurück zum Zitat Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRef Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRef
12.
Zurück zum Zitat Park J, Joo J, Kwon SG, Jang YJ, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660CrossRef Park J, Joo J, Kwon SG, Jang YJ, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660CrossRef
13.
Zurück zum Zitat Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41:1696–1709CrossRef Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41:1696–1709CrossRef
14.
Zurück zum Zitat Xia YN, Xiong YJ, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRef Xia YN, Xiong YJ, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRef
15.
Zurück zum Zitat Kovalenko MV, Scheele M, Talapin DV (2009) Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324:1417–1420CrossRef Kovalenko MV, Scheele M, Talapin DV (2009) Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324:1417–1420CrossRef
16.
Zurück zum Zitat Bailey RE, Smith AM, Nie SM (2004) Quantum dots in biology and medicine. Physica E 25:1–12CrossRef Bailey RE, Smith AM, Nie SM (2004) Quantum dots in biology and medicine. Physica E 25:1–12CrossRef
17.
Zurück zum Zitat Bao YP, Yeh HC, Zhong C, Ivanov SA, Sharma JK, Neidig ML, Vu DM, Shreve AP, Dyer RB, Werner JH, Martinez JS (2010) Formation and stabilization of fluorescent gold nanoclusters using small molecules. J Phys Chem C 114:15879–15882CrossRef Bao YP, Yeh HC, Zhong C, Ivanov SA, Sharma JK, Neidig ML, Vu DM, Shreve AP, Dyer RB, Werner JH, Martinez JS (2010) Formation and stabilization of fluorescent gold nanoclusters using small molecules. J Phys Chem C 114:15879–15882CrossRef
18.
Zurück zum Zitat Tomczaka N, Janczewski D, Han MY, Vancso GJ (2009) Designer polymer-quantum dot architectures. Prog Polym Sci 34:393–430CrossRef Tomczaka N, Janczewski D, Han MY, Vancso GJ (2009) Designer polymer-quantum dot architectures. Prog Polym Sci 34:393–430CrossRef
19.
Zurück zum Zitat Scott RW, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704CrossRef Scott RW, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704CrossRef
20.
Zurück zum Zitat Vohsa JK, Fahlman BD (2007) Advances in the controlled growth of nanoclusters using a dendritic architecture. New J Chem 31:1041–1051CrossRef Vohsa JK, Fahlman BD (2007) Advances in the controlled growth of nanoclusters using a dendritic architecture. New J Chem 31:1041–1051CrossRef
21.
Zurück zum Zitat Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275CrossRef Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275CrossRef
22.
Zurück zum Zitat Gao C (2008) Hyperbranched Polymers and Functional Nanoscience (Chapter 2). In: Adeli M (ed) Novel Polymers and Nanoscience. Transworld Research Network, Kerala, pp 33–71 Gao C (2008) Hyperbranched Polymers and Functional Nanoscience (Chapter 2). In: Adeli M (ed) Novel Polymers and Nanoscience. Transworld Research Network, Kerala, pp 33–71
23.
Zurück zum Zitat Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures: synthetic strategies and major characterization aspects. Chem Rev 109:5924–5973CrossRef Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures: synthetic strategies and major characterization aspects. Chem Rev 109:5924–5973CrossRef
24.
Zurück zum Zitat Zhou YF, Yan DY (2009) Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectives. Chem Commun 10:1172–1188CrossRef Zhou YF, Yan DY (2009) Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectives. Chem Commun 10:1172–1188CrossRef
25.
Zurück zum Zitat Zhou YF, Huang W, Liu JY, Zhu XY, Yan DY (2010) Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22:4567–4590CrossRef Zhou YF, Huang W, Liu JY, Zhu XY, Yan DY (2010) Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22:4567–4590CrossRef
26.
Zurück zum Zitat Irfan M, Seiler M (2010) Encapsulation using hyperbranched polymers: from research and technologies to emerging applications. Ind Eng Chem Res 49:1169–1196CrossRef Irfan M, Seiler M (2010) Encapsulation using hyperbranched polymers: from research and technologies to emerging applications. Ind Eng Chem Res 49:1169–1196CrossRef
27.
Zurück zum Zitat Han J, Gao C (2011) Host-guest supramolecular chemistry of dendritic macromolecules. Curr Org Chem 15:2–26CrossRef Han J, Gao C (2011) Host-guest supramolecular chemistry of dendritic macromolecules. Curr Org Chem 15:2–26CrossRef
28.
Zurück zum Zitat Perignon N, Mingotaud AF, Marty JD, Lattes IR, Mingotaud C (2004) Formation and stabilization in water of metal nanoparticles by a hyperbranched polymer chemically analogous to PAMAM dendrimers. Chem Mater 16:4856–4858CrossRef Perignon N, Mingotaud AF, Marty JD, Lattes IR, Mingotaud C (2004) Formation and stabilization in water of metal nanoparticles by a hyperbranched polymer chemically analogous to PAMAM dendrimers. Chem Mater 16:4856–4858CrossRef
29.
Zurück zum Zitat Perignon N, Marty JD, Mingotaud AF, Dumont M, Lattes IR, Mingotaud C (2007) Hyperbranched polymers analogous to PAMAM dendrimers for the formation and stabilization of gold nanoparticles. Macromolecules 40:3034–3041CrossRef Perignon N, Marty JD, Mingotaud AF, Dumont M, Lattes IR, Mingotaud C (2007) Hyperbranched polymers analogous to PAMAM dendrimers for the formation and stabilization of gold nanoparticles. Macromolecules 40:3034–3041CrossRef
30.
Zurück zum Zitat Marty JD, Aripe EM, Mingotaud AF, Mingotaud C (2008) Hyperbranched polyamidoamine as stabilizer for catalytically active nanoparticles in water. J Colloid Interface Sci 326:51–54CrossRef Marty JD, Aripe EM, Mingotaud AF, Mingotaud C (2008) Hyperbranched polyamidoamine as stabilizer for catalytically active nanoparticles in water. J Colloid Interface Sci 326:51–54CrossRef
31.
Zurück zum Zitat Saliba S, Serrano CV, Keilitz J, Kahn ML, Mingotaud C, Haag R, Marty JD (2010) Hyperbranched polymers for the formation and stabilization of ZnO nanoparticles. Chem Mater 22:6301–6309CrossRef Saliba S, Serrano CV, Keilitz J, Kahn ML, Mingotaud C, Haag R, Marty JD (2010) Hyperbranched polymers for the formation and stabilization of ZnO nanoparticles. Chem Mater 22:6301–6309CrossRef
32.
Zurück zum Zitat Sun YY, Wang D, Gao JG, Zheng Z, Zhang QJ (2007) Synthesis of silver nanoparticles under hyperbranched poly(amido amine)s. J Appl Polym Sci 103:3701–3705CrossRef Sun YY, Wang D, Gao JG, Zheng Z, Zhang QJ (2007) Synthesis of silver nanoparticles under hyperbranched poly(amido amine)s. J Appl Polym Sci 103:3701–3705CrossRef
33.
Zurück zum Zitat Sun YY, Liu YQ, Zhao GZ, Zhang QJ (2008) Effects of hyperbranched poly(amido-amine)s structures on synthesis of Ag particles. J Appl Polym Sci 107:9–13CrossRef Sun YY, Liu YQ, Zhao GZ, Zhang QJ (2008) Effects of hyperbranched poly(amido-amine)s structures on synthesis of Ag particles. J Appl Polym Sci 107:9–13CrossRef
34.
Zurück zum Zitat Sun YY, Liu YQ, Zhao GZ, Zhang QJ (2008) Effects of hyperbranched poly(amido-amine)s generation number on synthesis of Ag nanoparticles. J Polym Res 15:269–273CrossRef Sun YY, Liu YQ, Zhao GZ, Zhang QJ (2008) Effects of hyperbranched poly(amido-amine)s generation number on synthesis of Ag nanoparticles. J Polym Res 15:269–273CrossRef
35.
Zurück zum Zitat Zhang YW, Peng HS, Huang W, Zhou YF, Zhang XH, Yan DY (2008) Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J Phys Chem C 112:2330–2336CrossRef Zhang YW, Peng HS, Huang W, Zhou YF, Zhang XH, Yan DY (2008) Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J Phys Chem C 112:2330–2336CrossRef
36.
Zurück zum Zitat Zhang YW, Peng HS, Huang W, Zhou YF, Yan DY (2008) Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interface Sci 325:371–376CrossRef Zhang YW, Peng HS, Huang W, Zhou YF, Yan DY (2008) Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interface Sci 325:371–376CrossRef
37.
Zurück zum Zitat Zhang F, Wu XL, Chen YY, Lin H (2009) Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fib Polym 10:496–501CrossRef Zhang F, Wu XL, Chen YY, Lin H (2009) Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fib Polym 10:496–501CrossRef
38.
Zurück zum Zitat Zhu LJ, Shi YF, Tu CL, Wang RB, Pang Y, Qiu F, Zhu XY, Yan DY, He L, Jin CY, Zhu BS (2010) Construction and application of a pH-sensitive nanoreactor via a double-hydrophilic multiarm hyperbranched polymer. Langmuir 26:8875–8881CrossRef Zhu LJ, Shi YF, Tu CL, Wang RB, Pang Y, Qiu F, Zhu XY, Yan DY, He L, Jin CY, Zhu BS (2010) Construction and application of a pH-sensitive nanoreactor via a double-hydrophilic multiarm hyperbranched polymer. Langmuir 26:8875–8881CrossRef
39.
Zurück zum Zitat Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun 24:3018–3019CrossRef Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun 24:3018–3019CrossRef
40.
Zurück zum Zitat Garamus VM, Maksimova T, Richtering W, Aymonier C, Thomann R, Antonietti L, Mecking S (2004) Solution structure of metal particles prepared in unimolecular reactors of amphiphilic hyperbranched macromolecules. Macromolecules 37:7893–7900CrossRef Garamus VM, Maksimova T, Richtering W, Aymonier C, Thomann R, Antonietti L, Mecking S (2004) Solution structure of metal particles prepared in unimolecular reactors of amphiphilic hyperbranched macromolecules. Macromolecules 37:7893–7900CrossRef
41.
Zurück zum Zitat Tuchbreiter L, Mecking S (2007) Hydroformylation with dendritic polymer stabilized rhodium colloids as catalyst precursors. Macromol Chem Phys 208:1688–1693CrossRef Tuchbreiter L, Mecking S (2007) Hydroformylation with dendritic polymer stabilized rhodium colloids as catalyst precursors. Macromol Chem Phys 208:1688–1693CrossRef
42.
Zurück zum Zitat Gladitz M, Reinemann S, Radusch HJ (2009) Preparation of silver nanoparticle dispersions via a dendritic-polymer template approach and their use for antibacterial surface treatment. Macromol Mater Eng 294:178–189CrossRef Gladitz M, Reinemann S, Radusch HJ (2009) Preparation of silver nanoparticle dispersions via a dendritic-polymer template approach and their use for antibacterial surface treatment. Macromol Mater Eng 294:178–189CrossRef
43.
Zurück zum Zitat Bernabe AG, Kramer M, Olah B, Haag R (2004) Syntheses and phase-transfer properties of dendritic nanocarriers that contain perfluorinated shell structures. Chem Eur J 10:2822–2830CrossRef Bernabe AG, Kramer M, Olah B, Haag R (2004) Syntheses and phase-transfer properties of dendritic nanocarriers that contain perfluorinated shell structures. Chem Eur J 10:2822–2830CrossRef
44.
Zurück zum Zitat Krämer M, Perignon N, Haag R, Marty JD, Thomann R, Viguerie NL, Mingotaud C (2005) Water-soluble dendritic architectures with carbohydrate shells for the templation and stabilization of catalytically active metal nanoparticles. Macromolecules 38:8308–8315CrossRef Krämer M, Perignon N, Haag R, Marty JD, Thomann R, Viguerie NL, Mingotaud C (2005) Water-soluble dendritic architectures with carbohydrate shells for the templation and stabilization of catalytically active metal nanoparticles. Macromolecules 38:8308–8315CrossRef
45.
Zurück zum Zitat Keilitz J, Radowski MR, Marty JD, Haag R, Gauffre F, Mingotaud C (2008) Dendritic polymers with a core-multishell architecture: a versatile tool for the stabilization of nanoparticles. Chem Mater 20:2423–2425CrossRef Keilitz J, Radowski MR, Marty JD, Haag R, Gauffre F, Mingotaud C (2008) Dendritic polymers with a core-multishell architecture: a versatile tool for the stabilization of nanoparticles. Chem Mater 20:2423–2425CrossRef
46.
Zurück zum Zitat Moisan S, Martinez V, Weisbecker P, Cansell F, Mecking S, Aymonier C (2007) General approach for the synthesis of organic-inorganic hybrid nanoparticles mediated by supercritical CO2. J Am Chem Soc 129:10602–10606CrossRef Moisan S, Martinez V, Weisbecker P, Cansell F, Mecking S, Aymonier C (2007) General approach for the synthesis of organic-inorganic hybrid nanoparticles mediated by supercritical CO2. J Am Chem Soc 129:10602–10606CrossRef
47.
Zurück zum Zitat Shi YF, Tu CL, Wang RB, Wu JY, Zhu XY, Yan DY (2008) Preparation of CdS nanocrystals within supramolecular self-assembled nanoreactors and their phase transfer behavior. Langmuir 24:11955–11958CrossRef Shi YF, Tu CL, Wang RB, Wu JY, Zhu XY, Yan DY (2008) Preparation of CdS nanocrystals within supramolecular self-assembled nanoreactors and their phase transfer behavior. Langmuir 24:11955–11958CrossRef
48.
Zurück zum Zitat Kim K, Lee HB, Lee JW, Park HK, Shin KS (2008) Self-assembly of poly(ethylenimine)-capped Au nanoparticles at a toluene-water interface for efficient surface-enhanced raman scattering. Langmuir 24:7178–7183CrossRef Kim K, Lee HB, Lee JW, Park HK, Shin KS (2008) Self-assembly of poly(ethylenimine)-capped Au nanoparticles at a toluene-water interface for efficient surface-enhanced raman scattering. Langmuir 24:7178–7183CrossRef
49.
Zurück zum Zitat Bai LT, Zhu HZ, Thrasher JS, Street SC (2009) Synthesis and electrocatalytic activity of photoreduced platinum nanoparticles in a poly(ethylenimine) Matrix. Appl Mater Interface 1:2304–2311CrossRef Bai LT, Zhu HZ, Thrasher JS, Street SC (2009) Synthesis and electrocatalytic activity of photoreduced platinum nanoparticles in a poly(ethylenimine) Matrix. Appl Mater Interface 1:2304–2311CrossRef
50.
Zurück zum Zitat Hassan ML, Ali AF (2008) Synthesis of nanostructured cadmium and zinc sulfides in aqueous solutions of hyperbranched polyethyleneimine. J Cryst Growth 310:5252–5258CrossRef Hassan ML, Ali AF (2008) Synthesis of nanostructured cadmium and zinc sulfides in aqueous solutions of hyperbranched polyethyleneimine. J Cryst Growth 310:5252–5258CrossRef
51.
Zurück zum Zitat Juttukonda V, Paddock RL, Raymond JE, Denomme D, Richardson AE, Slusher LE, Fahlman BD (2006) Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers. J Am Chem Soc 128:420–421CrossRef Juttukonda V, Paddock RL, Raymond JE, Denomme D, Richardson AE, Slusher LE, Fahlman BD (2006) Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers. J Am Chem Soc 128:420–421CrossRef
52.
Zurück zum Zitat Goon IY, Lai L, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: systematic control using polyethyleneimine. Chem Mater 21:673–681CrossRef Goon IY, Lai L, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: systematic control using polyethyleneimine. Chem Mater 21:673–681CrossRef
53.
Zurück zum Zitat Mecking S, Thomann R, Frey H, Sunder A (2000) Preparation of catalytically active palladium nanoclusters in compartments of amphiphilic hyperbranched polyglycerols. Macromolecules 33:3958–3960CrossRef Mecking S, Thomann R, Frey H, Sunder A (2000) Preparation of catalytically active palladium nanoclusters in compartments of amphiphilic hyperbranched polyglycerols. Macromolecules 33:3958–3960CrossRef
54.
Zurück zum Zitat Sablong R, Schlotterbeck U, Vogt D, Mecking S (2003) Catalysis with soluble hybrids of highly branched macromolecules with palladium nanoparticles in a continuously operated membrane reactor. Adv Synth Catal 345:333–336CrossRef Sablong R, Schlotterbeck U, Vogt D, Mecking S (2003) Catalysis with soluble hybrids of highly branched macromolecules with palladium nanoparticles in a continuously operated membrane reactor. Adv Synth Catal 345:333–336CrossRef
55.
Zurück zum Zitat Chen Y, Frey H, Thomann R, Stiriba SE (2006) Optically active amphiphilic hyperbranched polyglycerols as templates for palladium nanoparticles. Inorganica Chim Acta 359:1837–1844CrossRef Chen Y, Frey H, Thomann R, Stiriba SE (2006) Optically active amphiphilic hyperbranched polyglycerols as templates for palladium nanoparticles. Inorganica Chim Acta 359:1837–1844CrossRef
56.
Zurück zum Zitat Schlotterbeck U, Aymonier C, Thomann R, Hofmeister H, Tromp M, Richtering W, Mecking S (2004) Shape-selective synthesis of palladium nanoparticles stabilized by highly branched amphiphilic polymers. Adv Func Mater 14:999–1004CrossRef Schlotterbeck U, Aymonier C, Thomann R, Hofmeister H, Tromp M, Richtering W, Mecking S (2004) Shape-selective synthesis of palladium nanoparticles stabilized by highly branched amphiphilic polymers. Adv Func Mater 14:999–1004CrossRef
57.
Zurück zum Zitat Ding XY, Liu HW, Shi WF, Skrifvars M (2009) Form-Fill-Seal methodology for controlled encapsulation of small silver particles in hyperbranched polyglycidol. J Appl Polym Sci 112:1209–1214CrossRef Ding XY, Liu HW, Shi WF, Skrifvars M (2009) Form-Fill-Seal methodology for controlled encapsulation of small silver particles in hyperbranched polyglycidol. J Appl Polym Sci 112:1209–1214CrossRef
58.
Zurück zum Zitat Shen Z, Duan HW, Frey H (2007) Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly(acrylic acid) as “molecular hydrogel” templates. Adv Mater 19:349–352CrossRef Shen Z, Duan HW, Frey H (2007) Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly(acrylic acid) as “molecular hydrogel” templates. Adv Mater 19:349–352CrossRef
59.
Zurück zum Zitat Keilitz J, Schwarze M, Nowag S, Schomäcker R, Haag R (2010) Homogeneous stabilization of Pt nanoparticles in dendritic core-multishell architectures: application in catalytic hydrogenation reactions and recycling. Chem Cat Chem 2:863–870 Keilitz J, Schwarze M, Nowag S, Schomäcker R, Haag R (2010) Homogeneous stabilization of Pt nanoparticles in dendritic core-multishell architectures: application in catalytic hydrogenation reactions and recycling. Chem Cat Chem 2:863–870
60.
Zurück zum Zitat Keilitz J, Nowag S, Marty JD, Haag R (2010) Chirally modified platinum nanoparticles stabilized by dendritic core-multishell architectures for the asymmetric hydrogenation of ethyl pyruvate. Adv Synth Catal 352:1503–1511CrossRef Keilitz J, Nowag S, Marty JD, Haag R (2010) Chirally modified platinum nanoparticles stabilized by dendritic core-multishell architectures for the asymmetric hydrogenation of ethyl pyruvate. Adv Synth Catal 352:1503–1511CrossRef
61.
Zurück zum Zitat Wan DC, Fu Q, Huang JL (2006) Synthesis of amphiphilic hyperbranched polyglycerol polymers and their application as template for size control of gold nanoparticles. J Appl Polym Sci 101:509–514CrossRef Wan DC, Fu Q, Huang JL (2006) Synthesis of amphiphilic hyperbranched polyglycerol polymers and their application as template for size control of gold nanoparticles. J Appl Polym Sci 101:509–514CrossRef
62.
Zurück zum Zitat Wan DC, Fu Q, Huang JL (2006) Synthesis of a thioether modified hyperbranched polyglycerol and its template effect on fabrication of CdS and CdSe nanoparticles. J Appl Polym Sci 102:3679–3684CrossRef Wan DC, Fu Q, Huang JL (2006) Synthesis of a thioether modified hyperbranched polyglycerol and its template effect on fabrication of CdS and CdSe nanoparticles. J Appl Polym Sci 102:3679–3684CrossRef
63.
Zurück zum Zitat Wan DC, Pu HT (2007) Synthesis of a thermoresponsive platinum nanocomposite using a three-layer onion-like polymer as template. Mater Lett 61:3404–3408CrossRef Wan DC, Pu HT (2007) Synthesis of a thermoresponsive platinum nanocomposite using a three-layer onion-like polymer as template. Mater Lett 61:3404–3408CrossRef
64.
Zurück zum Zitat Zhou L, Gao C, Hu XZ, Xu WJ (2011) General avenue to multifunctional aqueous nanocrystals stabilized by hyperbranched polyglycerol. Chem Mater 23:1461–1470CrossRef Zhou L, Gao C, Hu XZ, Xu WJ (2011) General avenue to multifunctional aqueous nanocrystals stabilized by hyperbranched polyglycerol. Chem Mater 23:1461–1470CrossRef
65.
Zurück zum Zitat Li HQ, Jo JK, Zhang LD, Ha CS, Suh H, Kim I (2010) Hyperbranched polyglycidol assisted green synthetic protocols for the preparation of multifunctional metal nanoparticles. Langmuir 26:18442–18453CrossRef Li HQ, Jo JK, Zhang LD, Ha CS, Suh H, Kim I (2010) Hyperbranched polyglycidol assisted green synthetic protocols for the preparation of multifunctional metal nanoparticles. Langmuir 26:18442–18453CrossRef
66.
Zurück zum Zitat Bao CY, Jin M, Lu R, Zhang TR, Zhao YY (2003) Hyperbranched poly(amine-ester) templates for the synthesis of Au nanoparticles. Mater Chem Phys 82:812–817CrossRef Bao CY, Jin M, Lu R, Zhang TR, Zhao YY (2003) Hyperbranched poly(amine-ester) templates for the synthesis of Au nanoparticles. Mater Chem Phys 82:812–817CrossRef
67.
Zurück zum Zitat Wei XZ, Zhu BK, Xu YY (2005) Preparation and stability of copper particles formed using the template of hyperbranched poly(amine-ester). Colloid Polym Sci 284:102–107CrossRef Wei XZ, Zhu BK, Xu YY (2005) Preparation and stability of copper particles formed using the template of hyperbranched poly(amine-ester). Colloid Polym Sci 284:102–107CrossRef
68.
Zurück zum Zitat Liang HL, Yu DM, Xie YC, Min C, Zhang J, Hu GH (2009) Preparation of nano-Ag particles and their modification on the mechanical and dielectric properties of epoxy resin. Polym Eng Sci 49:2189–2194CrossRef Liang HL, Yu DM, Xie YC, Min C, Zhang J, Hu GH (2009) Preparation of nano-Ag particles and their modification on the mechanical and dielectric properties of epoxy resin. Polym Eng Sci 49:2189–2194CrossRef
69.
Zurück zum Zitat Zhu ZD, Kai L, Wang YC (2006) Synthesis and applications of hyperbranched polyesters-preparation and characterization of crystalline silver nanoparticles. Mate Chem Phy 96:447–453CrossRef Zhu ZD, Kai L, Wang YC (2006) Synthesis and applications of hyperbranched polyesters-preparation and characterization of crystalline silver nanoparticles. Mate Chem Phy 96:447–453CrossRef
70.
Zurück zum Zitat Rybak BM, Ornatska M, Bergman KN, Genson KL, Tsukruk VV (2006) Formation of silver nanoparticles at the air-water interface mediated by a monolayer of functionalized hyperbranched molecules. Langmuir 22:1027–1037CrossRef Rybak BM, Ornatska M, Bergman KN, Genson KL, Tsukruk VV (2006) Formation of silver nanoparticles at the air-water interface mediated by a monolayer of functionalized hyperbranched molecules. Langmuir 22:1027–1037CrossRef
71.
Zurück zum Zitat Zhao YB, Zou JH, Shi WF (2005) Synthesis and characterization of PbS/modified hyperbranched polyester nanocomposite hollow spheres at room temperature. Mater Lett 59:686–689CrossRef Zhao YB, Zou JH, Shi WF (2005) Synthesis and characterization of PbS/modified hyperbranched polyester nanocomposite hollow spheres at room temperature. Mater Lett 59:686–689CrossRef
72.
Zurück zum Zitat Zhao YB, Zou JH, Shi WF (2005) In situ synthesis and characterization of lead sulfide nanocrystallites in the modified hyperbranched polyester by gamma-ray irradiation. Mater Sci Engi B 121:20–24CrossRef Zhao YB, Zou JH, Shi WF (2005) In situ synthesis and characterization of lead sulfide nanocrystallites in the modified hyperbranched polyester by gamma-ray irradiation. Mater Sci Engi B 121:20–24CrossRef
73.
Zurück zum Zitat Gianni AD, Trabelsi S, Rizza G, Sangermano M, Althues H, Kaskel S, Voit B (2007) Hyperbranched polymer/TiO2 hybrid nanoparticles synthesized via an in situ sol-gel process. Macromol Chem Phys 208:76–86CrossRef Gianni AD, Trabelsi S, Rizza G, Sangermano M, Althues H, Kaskel S, Voit B (2007) Hyperbranched polymer/TiO2 hybrid nanoparticles synthesized via an in situ sol-gel process. Macromol Chem Phys 208:76–86CrossRef
74.
Zurück zum Zitat Tabuani D, Monticelli O, Chincarini A, Bianchini C, Vizza F, Moneti S, Russo S (2003) Palladium nanoparticles supported on hyperbranched aramids: synthesis, characterization, and some applications in the hydrogenation of unsaturated substrates. Macromolecules 36:4294–4301CrossRef Tabuani D, Monticelli O, Chincarini A, Bianchini C, Vizza F, Moneti S, Russo S (2003) Palladium nanoparticles supported on hyperbranched aramids: synthesis, characterization, and some applications in the hydrogenation of unsaturated substrates. Macromolecules 36:4294–4301CrossRef
75.
Zurück zum Zitat Tabuani D, Monticelli O, Komber H, Russo S (2003) Preparation and characterisation of Pd nanoclusters in hyperbranched aramid templates to be used in homogeneous catalysis. Macromol Chem Phys 204:1576–1583CrossRef Tabuani D, Monticelli O, Komber H, Russo S (2003) Preparation and characterisation of Pd nanoclusters in hyperbranched aramid templates to be used in homogeneous catalysis. Macromol Chem Phys 204:1576–1583CrossRef
76.
Zurück zum Zitat Monticellia O, Russoa S, Campagna R, Voit B (2005) Preparation and characterisation of blends based on polyamide 6 and hyperbranched aramids as palladium nanoparticle supports. Polymer 46:3597–3606CrossRef Monticellia O, Russoa S, Campagna R, Voit B (2005) Preparation and characterisation of blends based on polyamide 6 and hyperbranched aramids as palladium nanoparticle supports. Polymer 46:3597–3606CrossRef
77.
Zurück zum Zitat Mahapatra SS, Karak N (2008) Silver nanoparticle in hyperbranched polyamine: Synthesis, characterization and antibacterial activity. Mater Chem Phys 112:1114–1119CrossRef Mahapatra SS, Karak N (2008) Silver nanoparticle in hyperbranched polyamine: Synthesis, characterization and antibacterial activity. Mater Chem Phys 112:1114–1119CrossRef
78.
Zurück zum Zitat Kakati N, Mahapatra SS, Karak N (2008) Silver nanoparticles in polyacrylamide and hyperbranched polyamine matrix. Pure Appl Chem 45:658–663CrossRef Kakati N, Mahapatra SS, Karak N (2008) Silver nanoparticles in polyacrylamide and hyperbranched polyamine matrix. Pure Appl Chem 45:658–663CrossRef
79.
Zurück zum Zitat Liu SH, Qian XF, Yin J, Wang XL, Zhu ZK (2002) Synthesis and characterization of Ag2S nanocrystals in hyperbranched polyurethane at room temperature. J Solid State Chem 168:259–262CrossRef Liu SH, Qian XF, Yin J, Wang XL, Zhu ZK (2002) Synthesis and characterization of Ag2S nanocrystals in hyperbranched polyurethane at room temperature. J Solid State Chem 168:259–262CrossRef
80.
Zurück zum Zitat Lu HW, Liu SH, Wang XL, Qian XF, Yin J, Zhu ZK (2003) Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+. Mater Chem Phys 81:104–107CrossRef Lu HW, Liu SH, Wang XL, Qian XF, Yin J, Zhu ZK (2003) Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+. Mater Chem Phys 81:104–107CrossRef
81.
Zurück zum Zitat Karak N, Konwarh R, Voit B (2010) Catalytically active vegetable-oil-based thermoplastic hyperbranched polyurethane/silver nanocomposites. Macromol Mater Eng 295:159–169 Karak N, Konwarh R, Voit B (2010) Catalytically active vegetable-oil-based thermoplastic hyperbranched polyurethane/silver nanocomposites. Macromol Mater Eng 295:159–169
82.
Zurück zum Zitat Richter TV, Schuler F, Thomann R, Mülhaupt R, Ludwigs S (2009) Nanocomposites of size-tunable ZnO nanoparticles and amphiphilic hyperbranched polymers. Macromol Rapid Commun 30:579–583CrossRef Richter TV, Schuler F, Thomann R, Mülhaupt R, Ludwigs S (2009) Nanocomposites of size-tunable ZnO nanoparticles and amphiphilic hyperbranched polymers. Macromol Rapid Commun 30:579–583CrossRef
83.
Zurück zum Zitat Morikawa M, Kim K, Kinoshita H, Yasui K, Kasai Y, Kimizuka N (2010) Aqueous nanospheres self-assembled from hyperbranched polymers and silver ions: molecular inclusion and photoreduction characteristics. Macromolecules 43:8971–8976CrossRef Morikawa M, Kim K, Kinoshita H, Yasui K, Kasai Y, Kimizuka N (2010) Aqueous nanospheres self-assembled from hyperbranched polymers and silver ions: molecular inclusion and photoreduction characteristics. Macromolecules 43:8971–8976CrossRef
84.
Zurück zum Zitat Zhou L, Gao C, Xu WJ, Wang X, Xu YH (2009) Enhanced biocompatibility and biostability of CdTe quantum dots by facile surface-initiated dendritic polymerization. Biomacromolecules 10:1865–1874CrossRef Zhou L, Gao C, Xu WJ, Wang X, Xu YH (2009) Enhanced biocompatibility and biostability of CdTe quantum dots by facile surface-initiated dendritic polymerization. Biomacromolecules 10:1865–1874CrossRef
85.
Zurück zum Zitat Zhou L, Gao C, Xu WJ (2009) Amphibious polymer-functionalized CdTe quantum dots: synthesis, thermo-responsive self-assembly, and photoluminescent properties. J Mater Chem 19:5655–5664CrossRef Zhou L, Gao C, Xu WJ (2009) Amphibious polymer-functionalized CdTe quantum dots: synthesis, thermo-responsive self-assembly, and photoluminescent properties. J Mater Chem 19:5655–5664CrossRef
86.
Zurück zum Zitat Zhou L, Gao C, Hu XZ, Xu WJ (2010) One-pot large-scale synthesis of robust ultrafine silica-hybridized CdTe quantum dots. ACS Appl Mater Interfaces 2:1211–1219CrossRef Zhou L, Gao C, Hu XZ, Xu WJ (2010) One-pot large-scale synthesis of robust ultrafine silica-hybridized CdTe quantum dots. ACS Appl Mater Interfaces 2:1211–1219CrossRef
87.
Zurück zum Zitat Zhou L, Gao C, Xu WJ (2010) Simultaneous photoluminescence import and mechanical enhancement of polymer films using silica-hybridized quantum dots. J Mater Chem 20:5675–5681CrossRef Zhou L, Gao C, Xu WJ (2010) Simultaneous photoluminescence import and mechanical enhancement of polymer films using silica-hybridized quantum dots. J Mater Chem 20:5675–5681CrossRef
88.
Zurück zum Zitat Liu P, Wang TM (2007) Surface-graft hyperbranched polymer via self-condensing Atom Transfer Radical Polymerization from zinc oxide nanoparticles. Polym Eng Sci 47:1296–1301CrossRef Liu P, Wang TM (2007) Surface-graft hyperbranched polymer via self-condensing Atom Transfer Radical Polymerization from zinc oxide nanoparticles. Polym Eng Sci 47:1296–1301CrossRef
89.
Zurück zum Zitat Zhou L, Gao C, Xu WJ (2010) Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers. Langmuir 26:11217–11225CrossRef Zhou L, Gao C, Xu WJ (2010) Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers. Langmuir 26:11217–11225CrossRef
90.
Zurück zum Zitat Zhou L, Gao C, Xu WJ (2010) Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. ACS Appl Mater Interfaces 2:1483–1491CrossRef Zhou L, Gao C, Xu WJ (2010) Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. ACS Appl Mater Interfaces 2:1483–1491CrossRef
91.
Zurück zum Zitat Wang SX, Zhou Y, Yang SC, Ding BJ (2008) Growing hyperbranched polyglycerols on magnetic nanoparticles to resist nonspecific adsorption of proteins. Colloids Surf B 67:122–126CrossRef Wang SX, Zhou Y, Yang SC, Ding BJ (2008) Growing hyperbranched polyglycerols on magnetic nanoparticles to resist nonspecific adsorption of proteins. Colloids Surf B 67:122–126CrossRef
92.
Zurück zum Zitat Wang L, Neoh KG, Kang ET, Shuter B, Wang SC (2009) Superparamagnetic hyperbranched polyglycerol- grafted Fe3O4 nanoparticles as a novel magnetic resonance imaging contrast agent: An in vitro assessment. Adv Funct Mater 19:2615–2622CrossRef Wang L, Neoh KG, Kang ET, Shuter B, Wang SC (2009) Superparamagnetic hyperbranched polyglycerol- grafted Fe3O4 nanoparticles as a novel magnetic resonance imaging contrast agent: An in vitro assessment. Adv Funct Mater 19:2615–2622CrossRef
93.
Zurück zum Zitat Xu YY, Gao C, Kong H, Yan DY, Jin YZ, Watts PCP (2004) Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules 37:8846–8853CrossRef Xu YY, Gao C, Kong H, Yan DY, Jin YZ, Watts PCP (2004) Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules 37:8846–8853CrossRef
94.
Zurück zum Zitat Zhou L, Gao C, Xu WJ (2009) Efficient grafting of hyperbranched polyglycerol from hydroxyl-functionalized multiwalled carbon nanotubes by surface-initiated anionic ring-opening polymerization. Macromol Chem Phys 210:1011–1018CrossRef Zhou L, Gao C, Xu WJ (2009) Efficient grafting of hyperbranched polyglycerol from hydroxyl-functionalized multiwalled carbon nanotubes by surface-initiated anionic ring-opening polymerization. Macromol Chem Phys 210:1011–1018CrossRef
95.
Zurück zum Zitat Wang X, Zhou L, Gao C, Xu YH (2009) Primary evaluation of peptide ligand functionalized multiwalled carbon nanotubes as tumor targeting cells carrier. Acta Polym Sinica 8:717–722CrossRef Wang X, Zhou L, Gao C, Xu YH (2009) Primary evaluation of peptide ligand functionalized multiwalled carbon nanotubes as tumor targeting cells carrier. Acta Polym Sinica 8:717–722CrossRef
96.
Zurück zum Zitat Yang YK, Xie XL, Wu JG, Yang ZF, Wang XT, Mai YW (2006) Multiwalled carbon nanotubes Functionalized by hyperbranched poly(urea-urethane)s by a one-pot polycondensation. Macromol Rapid Commun 27:1695–1701CrossRef Yang YK, Xie XL, Wu JG, Yang ZF, Wang XT, Mai YW (2006) Multiwalled carbon nanotubes Functionalized by hyperbranched poly(urea-urethane)s by a one-pot polycondensation. Macromol Rapid Commun 27:1695–1701CrossRef
97.
Zurück zum Zitat Hong CY, You YZ, Wu DC, Liu Y, Pan CY (2005) Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP. Macromolecules 38:2606–2611CrossRef Hong CY, You YZ, Wu DC, Liu Y, Pan CY (2005) Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP. Macromolecules 38:2606–2611CrossRef
98.
Zurück zum Zitat Choi JY, Oh SJ, Lee HJ, Wang DH, Tan LS, Baek JB (2007) In-Situ grafting of hyperbranched poly(ether ketone)s onto multiwalled carbon nanotubes via the A3 + B2 Approach. Macromolecules 40:4474–4480CrossRef Choi JY, Oh SJ, Lee HJ, Wang DH, Tan LS, Baek JB (2007) In-Situ grafting of hyperbranched poly(ether ketone)s onto multiwalled carbon nanotubes via the A3 + B2 Approach. Macromolecules 40:4474–4480CrossRef
99.
Zurück zum Zitat Nikolic MS, Krack M, Aleksandrovic V, Kornowski A, Förster S, Weller H (2006) Tailor-made ligands for biocompatible nanoparticles. Angew Chem Int Ed 45:6577–6580CrossRef Nikolic MS, Krack M, Aleksandrovic V, Kornowski A, Förster S, Weller H (2006) Tailor-made ligands for biocompatible nanoparticles. Angew Chem Int Ed 45:6577–6580CrossRef
100.
Zurück zum Zitat Duan HW, Nie SM (2007) Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 129:3333–3338CrossRef Duan HW, Nie SM (2007) Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 129:3333–3338CrossRef
101.
Zurück zum Zitat Mohs AM, Duan HW, Kairdolf BA, Smith AM, Nie SM (2009) Proton-resistant quantum dots: stability in gastrointestinal fluids and implications for oral delivery of nanoparticle agents. Nano Res 2:500–508CrossRef Mohs AM, Duan HW, Kairdolf BA, Smith AM, Nie SM (2009) Proton-resistant quantum dots: stability in gastrointestinal fluids and implications for oral delivery of nanoparticle agents. Nano Res 2:500–508CrossRef
102.
Zurück zum Zitat Duan HW, Nie SM (2007) Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J Am Chem Soc 129:2412–2413CrossRef Duan HW, Nie SM (2007) Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J Am Chem Soc 129:2412–2413CrossRef
103.
Zurück zum Zitat Ji ML, Yang WL, Ren QG, Lu DR (2009) Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine). Nanotechnology 20:075101–075111CrossRef Ji ML, Yang WL, Ren QG, Lu DR (2009) Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine). Nanotechnology 20:075101–075111CrossRef
104.
Zurück zum Zitat Shi YF, Tu CL, Zhu Q, Qian HF, Ren JC, Liu CH, Zhu XY, Yan DY, Kong ESW, He P (2008) Self-assembly of CdTe nanocrystals at the water/oil interface by amphiphilic hyperbranched polymers. Nanotechnology 19:445609–445614CrossRef Shi YF, Tu CL, Zhu Q, Qian HF, Ren JC, Liu CH, Zhu XY, Yan DY, Kong ESW, He P (2008) Self-assembly of CdTe nanocrystals at the water/oil interface by amphiphilic hyperbranched polymers. Nanotechnology 19:445609–445614CrossRef
105.
Zurück zum Zitat Tang Q, Cheng F, Lou XL, Liu HJ, Chen Y (2009) Comparative study of thiol-free amphiphilic hyperbranched and linear polymers for the stabilization of large gold nanoparticles in organic solvent. J Colloid Interface Sci 337:485–491CrossRef Tang Q, Cheng F, Lou XL, Liu HJ, Chen Y (2009) Comparative study of thiol-free amphiphilic hyperbranched and linear polymers for the stabilization of large gold nanoparticles in organic solvent. J Colloid Interface Sci 337:485–491CrossRef
106.
Zurück zum Zitat Nann T (2005) Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chem Commun 13:1735–1736CrossRef Nann T (2005) Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chem Commun 13:1735–1736CrossRef
107.
Zurück zum Zitat Mao J, Yao JN, Wang LN, Liu WS (2008) Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier. J Colloid Interface Sci 319:353–356CrossRef Mao J, Yao JN, Wang LN, Liu WS (2008) Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier. J Colloid Interface Sci 319:353–356CrossRef
108.
Zurück zum Zitat Liu XY, Cheng F, Liu Y, Liu HJ, Chen Y (2010) Preparation and characterization of novel thermoresponsive gold nanoparticles and their responsive catalysis properties. J Mater Chem 20:360–368CrossRef Liu XY, Cheng F, Liu Y, Liu HJ, Chen Y (2010) Preparation and characterization of novel thermoresponsive gold nanoparticles and their responsive catalysis properties. J Mater Chem 20:360–368CrossRef
109.
Zurück zum Zitat Ho CH, Tobis J, Sprich C, Thomann R, Tiller JC (2004) Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 16:957–961CrossRef Ho CH, Tobis J, Sprich C, Thomann R, Tiller JC (2004) Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 16:957–961CrossRef
110.
Zurück zum Zitat Shen Y, Kuang M, Shen Z, Nieberle J, Duan HW, Frey H (2008) Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte: towards smart temperature and pH nanosensors. Angew Chem Int Ed 47:2227–2230CrossRef Shen Y, Kuang M, Shen Z, Nieberle J, Duan HW, Frey H (2008) Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte: towards smart temperature and pH nanosensors. Angew Chem Int Ed 47:2227–2230CrossRef
111.
Zurück zum Zitat Tiwari A, Aryal S, Pilla S, Gong SQ (2009) An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles. Talanta 78:1401–1407CrossRef Tiwari A, Aryal S, Pilla S, Gong SQ (2009) An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles. Talanta 78:1401–1407CrossRef
112.
Zurück zum Zitat Yan DY, Gao C, Frey H (2011) Hyperbranched Polymers: Synthesis, Properties, and Applications. Wiley, HobokenCrossRef Yan DY, Gao C, Frey H (2011) Hyperbranched Polymers: Synthesis, Properties, and Applications. Wiley, HobokenCrossRef
Metadaten
Titel
Hyperbranched polymers meet colloid nanocrystals: a promising avenue to multifunctional, robust nanohybrids
verfasst von
Xiaozhen Hu
Li Zhou
Chao Gao
Publikationsdatum
01.08.2011
Verlag
Springer-Verlag
Erschienen in
Colloid and Polymer Science / Ausgabe 12/2011
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-011-2457-1

Weitere Artikel der Ausgabe 12/2011

Colloid and Polymer Science 12/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.