Skip to main content
Erschienen in: Colloid and Polymer Science 17-18/2011

01.11.2011 | Original Contribution

Preparations and properties of waterborne polyurethane/allyl isocyanated-modified graphene oxide nanocomposites

verfasst von: S. H. Yoon, J. H. Park, E. Y. Kim, B. K. Kim

Erschienen in: Colloid and Polymer Science | Ausgabe 17-18/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We synthesized waterborne polyurethane (WPU)/allyl isocyanate modified graphene oxide (iGO) nanocomposites by UV curing, and the effects of iGO on the mechanical, dynamic mechanical, and thermal properties of the nanocomposites were systematically investigated. It was shown that the iGO chemically incorporated into the WPU chains by covalent bonding acts as a multifunctional cross-linking agent as well as reinforcing filler. Consequently, the tensile strength, glassy and rubbery state moduli, glass transition temperature, and thermal stability of the WPU were significantly increased up to an iGO content of 1%, beyond which most of the above properties showed a decrease, due probably to the auto-inhibition of the allyl compounds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lu Y, Larock RC (2008) Soybean-Oil-Based Waterborne Polyurethane Dispersions: Effects of Polyol Functionality and Hard Segment Content on Properties. Biomacromolecules 9:3332–3340CrossRef Lu Y, Larock RC (2008) Soybean-Oil-Based Waterborne Polyurethane Dispersions: Effects of Polyol Functionality and Hard Segment Content on Properties. Biomacromolecules 9:3332–3340CrossRef
2.
Zurück zum Zitat Kim BK, Lee JC (1996) Waterborne polyurethanes and their properties. J Polym Sci Part A: Polym Chem 34:1095–1104CrossRef Kim BK, Lee JC (1996) Waterborne polyurethanes and their properties. J Polym Sci Part A: Polym Chem 34:1095–1104CrossRef
3.
Zurück zum Zitat Lu Y, Larock RC (2010) Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties. Prog Org Coat 69:31–37CrossRef Lu Y, Larock RC (2010) Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties. Prog Org Coat 69:31–37CrossRef
4.
Zurück zum Zitat Iyer NP, Gnanarajan TP, Radhakrishnan G (2002) Mechanical and Thermal Properties of Networks Prepared from Reactive Poly(urethane-imide)s and Blocked Polyurethane Prepolymer. Macromol Chem Phys 203:712–717CrossRef Iyer NP, Gnanarajan TP, Radhakrishnan G (2002) Mechanical and Thermal Properties of Networks Prepared from Reactive Poly(urethane-imide)s and Blocked Polyurethane Prepolymer. Macromol Chem Phys 203:712–717CrossRef
5.
Zurück zum Zitat Schwalm R, Häußling L, Reich W, Beak E et al (1997) Tuning the mechanical properties of UV coatings towards hard and flexible systems. Prog Org Coat 32:191–196CrossRef Schwalm R, Häußling L, Reich W, Beak E et al (1997) Tuning the mechanical properties of UV coatings towards hard and flexible systems. Prog Org Coat 32:191–196CrossRef
6.
Zurück zum Zitat Kim BS, Park SH, Kim BK (2006) Nanosilica-reinforced UV-cured polyurethane dispersion. Colloid & Polym Sci 284:1067–1072CrossRef Kim BS, Park SH, Kim BK (2006) Nanosilica-reinforced UV-cured polyurethane dispersion. Colloid & Polym Sci 284:1067–1072CrossRef
7.
Zurück zum Zitat Kim BK, Seo JW, Jeong HM (2003) Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur Polym J 39:85–91CrossRef Kim BK, Seo JW, Jeong HM (2003) Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur Polym J 39:85–91CrossRef
8.
Zurück zum Zitat Dionne PJ, Ozisik R, Picu CR (2005) Structure and Dynamics of Polyethylene Nanocomposites. Macromolecules 38:9351–9358CrossRef Dionne PJ, Ozisik R, Picu CR (2005) Structure and Dynamics of Polyethylene Nanocomposites. Macromolecules 38:9351–9358CrossRef
9.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1339CrossRef
10.
Zurück zum Zitat Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon 42:2929–2937 Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon 42:2929–2937
11.
Zurück zum Zitat Raghu AV, Lee YR, Jeong HM, Shin CM (2008) Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites. Macro Chem Phys 209:2487–2493CrossRef Raghu AV, Lee YR, Jeong HM, Shin CM (2008) Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites. Macro Chem Phys 209:2487–2493CrossRef
12.
Zurück zum Zitat Cai D, Yusoh K, Song M (2009) The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20:085712CrossRef Cai D, Yusoh K, Song M (2009) The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20:085712CrossRef
13.
Zurück zum Zitat Maire J, Colas H, Maillard P (1968) Membranes de carbone et de graphite et leurs proprieties. Carbon 6:555–560CrossRef Maire J, Colas H, Maillard P (1968) Membranes de carbone et de graphite et leurs proprieties. Carbon 6:555–560CrossRef
14.
Zurück zum Zitat Ishikawa T, Kanemaru T, Teranishi H, Onishi K (1978) Composites of oxidized graphite material and expanded graphite material. US Patent 4094951 Ishikawa T, Kanemaru T, Teranishi H, Onishi K (1978) Composites of oxidized graphite material and expanded graphite material. US Patent 4094951
15.
Zurück zum Zitat Touzain P, Yazumi R, Maire J (1986) Insertion compounds of graphite with improved performances and electrochemical applications of those compounds. US Patent 4584252 Touzain P, Yazumi R, Maire J (1986) Insertion compounds of graphite with improved performances and electrochemical applications of those compounds. US Patent 4584252
16.
Zurück zum Zitat Watanabe N, Nakajima T, Hagiwara R (1988) Method for producing graphite fluoride. US Patent 4753786 Watanabe N, Nakajima T, Hagiwara R (1988) Method for producing graphite fluoride. US Patent 4753786
17.
Zurück zum Zitat Zhu C, Guo S, Fang Y, Dong S (2010) Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano 4:2429–2437CrossRef Zhu C, Guo S, Fang Y, Dong S (2010) Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano 4:2429–2437CrossRef
18.
Zurück zum Zitat Park SJ, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties via Chemical Cross-Linking. ACS Nano 2:572–578CrossRef Park SJ, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties via Chemical Cross-Linking. ACS Nano 2:572–578CrossRef
19.
Zurück zum Zitat Liu P, Gong K, Xiao P, Xiao M (2000) Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite. J Mater Chem 10:933–935CrossRef Liu P, Gong K, Xiao P, Xiao M (2000) Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite. J Mater Chem 10:933–935CrossRef
20.
Zurück zum Zitat Park SJ, Dikin DA, Nguyen ST, Ruoff RS (2009) Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine. J Phys Chem C 113:15801–15804CrossRef Park SJ, Dikin DA, Nguyen ST, Ruoff RS (2009) Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine. J Phys Chem C 113:15801–15804CrossRef
21.
Zurück zum Zitat Kim HW, Miura Y, Macosko CW (2010) Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chem Mater 22:3441–3450CrossRef Kim HW, Miura Y, Macosko CW (2010) Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chem Mater 22:3441–3450CrossRef
22.
Zurück zum Zitat Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2009) Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-l-lysine. Langmuir 25:12030–12033CrossRef Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2009) Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-l-lysine. Langmuir 25:12030–12033CrossRef
23.
Zurück zum Zitat Lee SK, Yoon SH, Jeong ID, Hartwig A, Kim BK (2011) Waterborne polyurethane nanocomposites having shape memory effects. J Polym Sci Part A: Polym Chem 49:634–641CrossRef Lee SK, Yoon SH, Jeong ID, Hartwig A, Kim BK (2011) Waterborne polyurethane nanocomposites having shape memory effects. J Polym Sci Part A: Polym Chem 49:634–641CrossRef
24.
Zurück zum Zitat Titelman GI, Gelman V, Bron S, Khalfin RL, Cohen Y, Bianco-Peled H (2005) Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 43:641–649CrossRef Titelman GI, Gelman V, Bron S, Khalfin RL, Cohen Y, Bianco-Peled H (2005) Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 43:641–649CrossRef
25.
Zurück zum Zitat Jang MK, Hartwig A, Kim BK (2009) Shape memory polyurethanes cross-linked by surface modified silica particles. J Mater Chem 19:1166–1172CrossRef Jang MK, Hartwig A, Kim BK (2009) Shape memory polyurethanes cross-linked by surface modified silica particles. J Mater Chem 19:1166–1172CrossRef
26.
Zurück zum Zitat Jung DH, Jeong HM, Kim BK (2010) Organic–inorganic chemical hybrids having shape memory effect. J Mater Chem 20:3458–3466CrossRef Jung DH, Jeong HM, Kim BK (2010) Organic–inorganic chemical hybrids having shape memory effect. J Mater Chem 20:3458–3466CrossRef
Metadaten
Titel
Preparations and properties of waterborne polyurethane/allyl isocyanated-modified graphene oxide nanocomposites
verfasst von
S. H. Yoon
J. H. Park
E. Y. Kim
B. K. Kim
Publikationsdatum
01.11.2011
Verlag
Springer-Verlag
Erschienen in
Colloid and Polymer Science / Ausgabe 17-18/2011
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-011-2498-5

Weitere Artikel der Ausgabe 17-18/2011

Colloid and Polymer Science 17-18/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.