Skip to main content
Erschienen in: Colloid and Polymer Science 12/2013

01.12.2013 | Original Contribution

TEMPO-mediated oxidation of bacterial cellulose in a bromide-free system

verfasst von: Chen Lai, Shujiang Zhang, Liyuan Sheng, Shibo Liao, Tingfei Xi, Zhixiong Zhang

Erschienen in: Colloid and Polymer Science | Ausgabe 12/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A partially C6-carboxylated bacterial cellulose (BC) with a high carboxylate content was prepared in a bromide-free system by using 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO) as a catalyst. ART-FTIR, X-ray diffraction, solid 13C-NMR, TEM analysis, and reaction kinetics measurements were performed to investigate the oxidation reaction of BC. Results show that C6 carboxylate was formed selectively on the microfiber surface without disrupting its highly ordered nanocrystalline structure. Given the extremely low accessibility of hydroxyl groups in d-anhydroglucopyranose units, the reaction can be described by second-order kinetics with very low reaction rate constants. pH exhibited a significant influence on the oxidation of BC and a higher activity at C6 was observed in a neutral medium.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hong F, Guo X, Zhang S, Han SF, Yang G, Jönssond LF (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Biores Tech 104:503–508CrossRef Hong F, Guo X, Zhang S, Han SF, Yang G, Jönssond LF (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Biores Tech 104:503–508CrossRef
2.
Zurück zum Zitat Tan LL, Ren L, Cao YY, Chen XL, Tang XY (2012) Bacterial cellulose synthesis in kombucha by Gluconacetobacter sp. and Saccharomyces sp. Adv Mater Res 554–556:1000–1003CrossRef Tan LL, Ren L, Cao YY, Chen XL, Tang XY (2012) Bacterial cellulose synthesis in kombucha by Gluconacetobacter sp. and Saccharomyces sp. Adv Mater Res 554–556:1000–1003CrossRef
3.
Zurück zum Zitat Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose a sophisticated multifunctional material. Taylor&Francis group, London, pp 144–145 Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose a sophisticated multifunctional material. Taylor&Francis group, London, pp 144–145
4.
Zurück zum Zitat Cheng KC (2010) Enhanced production of microbial extracellular polysaccharides and materials property analysis. Dissertation, The Pennsylvania State University Cheng KC (2010) Enhanced production of microbial extracellular polysaccharides and materials property analysis. Dissertation, The Pennsylvania State University
5.
Zurück zum Zitat Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153CrossRef Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153CrossRef
6.
Zurück zum Zitat Schlufter K, Heinze T (2010) Carboxymethylation of bacterial cellulose. Macromol Symp 294-II:117–124CrossRef Schlufter K, Heinze T (2010) Carboxymethylation of bacterial cellulose. Macromol Symp 294-II:117–124CrossRef
7.
Zurück zum Zitat Pecoraro E, Manzani D, Messaddeq Y, Ribeiro SJL (2008) Bacterial cellulose from Glucanacetobacter xylinus: preparation, properties and applications. Chapter 17. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 369–383 Pecoraro E, Manzani D, Messaddeq Y, Ribeiro SJL (2008) Bacterial cellulose from Glucanacetobacter xylinus: preparation, properties and applications. Chapter 17. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 369–383
8.
Zurück zum Zitat Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature's arts. J Mater Sci 35:261–270CrossRef Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature's arts. J Mater Sci 35:261–270CrossRef
9.
Zurück zum Zitat Mazhar UI, Taous K, Joong KP (2012) Nanoreinforced bacterialcellulose–montmorillonite composites for biomedical applications. Carbohyd Polym 89:1189–1197CrossRef Mazhar UI, Taous K, Joong KP (2012) Nanoreinforced bacterialcellulose–montmorillonite composites for biomedical applications. Carbohyd Polym 89:1189–1197CrossRef
10.
Zurück zum Zitat Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohyd Polym 94:603–611CrossRef Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohyd Polym 94:603–611CrossRef
11.
Zurück zum Zitat Costa LMM, de Olyveira GM, Basmaji PF, Lauro X (2012) Bacterial cellulose towards functional medical materials. J Bio Tiss Eng 2:185–196CrossRef Costa LMM, de Olyveira GM, Basmaji PF, Lauro X (2012) Bacterial cellulose towards functional medical materials. J Bio Tiss Eng 2:185–196CrossRef
12.
Zurück zum Zitat Manzine CLM, Molina DOG, Pierre B, Xavie FL (2012) Bacterial. J Biomater Tissue Eng 2:185–196CrossRef Manzine CLM, Molina DOG, Pierre B, Xavie FL (2012) Bacterial. J Biomater Tissue Eng 2:185–196CrossRef
13.
Zurück zum Zitat Malm CJ, Risberg B, Bodin A, Bäckdahl H, Johansson BR, Gatenholm P, Jeppsson A (2012) Small calibre biosynthetic bacterial cellulose blood vessels: 13-months patency in a sheep model. Scand Cardiovasc J 46:57–62CrossRef Malm CJ, Risberg B, Bodin A, Bäckdahl H, Johansson BR, Gatenholm P, Jeppsson A (2012) Small calibre biosynthetic bacterial cellulose blood vessels: 13-months patency in a sheep model. Scand Cardiovasc J 46:57–62CrossRef
14.
Zurück zum Zitat Jeong SI, Lee SE, Yang H, Park CS, Jin YH, Park YS (2012) Effect of α, β-unsaturated aldehydes on endothelial cell growth in bacterial cellulose for vascular tissue engineering. Mol Cell Toxicol 8:119–126CrossRef Jeong SI, Lee SE, Yang H, Park CS, Jin YH, Park YS (2012) Effect of α, β-unsaturated aldehydes on endothelial cell growth in bacterial cellulose for vascular tissue engineering. Mol Cell Toxicol 8:119–126CrossRef
15.
Zurück zum Zitat Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang HL, Wang ZX (2012) The osteogenesis of bacterialcellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33:6644–6649CrossRef Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang HL, Wang ZX (2012) The osteogenesis of bacterialcellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33:6644–6649CrossRef
16.
Zurück zum Zitat Wu J, Zheng YD, Yang Z, Cui QY, Wang QL, Gao S, Ding X (2012) Chemical modifications and characteristic changes in bacterial cellulose treated with different media. J Poly Res 19:9945–9950CrossRef Wu J, Zheng YD, Yang Z, Cui QY, Wang QL, Gao S, Ding X (2012) Chemical modifications and characteristic changes in bacterial cellulose treated with different media. J Poly Res 19:9945–9950CrossRef
17.
Zurück zum Zitat Tomé LC, Pinto RJB, Trovatti E, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2011) Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chem 13:419–427CrossRef Tomé LC, Pinto RJB, Trovatti E, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2011) Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chem 13:419–427CrossRef
18.
Zurück zum Zitat Hirai A, Inui O, Horii FA, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502CrossRef Hirai A, Inui O, Horii FA, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502CrossRef
19.
Zurück zum Zitat Oshima T, Kondo K, Ohto K, Inoue K, Baba Y (2008) Preparation of phosphorylated bacterialcellulose as an adsorbent for metal ions. React Functional Poly 68:376–383CrossRef Oshima T, Kondo K, Ohto K, Inoue K, Baba Y (2008) Preparation of phosphorylated bacterialcellulose as an adsorbent for metal ions. React Functional Poly 68:376–383CrossRef
20.
Zurück zum Zitat Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Biores Tech 101:6084–6091CrossRef Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Biores Tech 101:6084–6091CrossRef
21.
Zurück zum Zitat Fink H, Ahrenstedt L, Bodin A, Brumer H, Gatenholm P, Krettek A, Risberg B (2011) Bacterial cellulose modified with xyloglucan bearing the adhesion peptide RGD promotes endothelial cell adhesion and metabolism—a promising modification for vascular grafts. J Tissue Eng Regen Med 5:454–63CrossRef Fink H, Ahrenstedt L, Bodin A, Brumer H, Gatenholm P, Krettek A, Risberg B (2011) Bacterial cellulose modified with xyloglucan bearing the adhesion peptide RGD promotes endothelial cell adhesion and metabolism—a promising modification for vascular grafts. J Tissue Eng Regen Med 5:454–63CrossRef
22.
Zurück zum Zitat Fernandes SCM, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Desbriéres J (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029CrossRef Fernandes SCM, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Desbriéres J (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029CrossRef
23.
Zurück zum Zitat Brown EE, Laborie MPG, Zhang JW (2012) Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 19:127–137CrossRef Brown EE, Laborie MPG, Zhang JW (2012) Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 19:127–137CrossRef
24.
Zurück zum Zitat Oliveira ETL, Freire CSR, Silvestre AJD, Neto CP, Pinto JJCC, Gandini A (2010) Novel bacterialcellulose–acrylicresin nanocomposites. Compos Sci Tech 70:1148–1153CrossRef Oliveira ETL, Freire CSR, Silvestre AJD, Neto CP, Pinto JJCC, Gandini A (2010) Novel bacterialcellulose–acrylicresin nanocomposites. Compos Sci Tech 70:1148–1153CrossRef
25.
Zurück zum Zitat Yadav V, Paniliatis BJ, Shi H, Lee KB, Cebe P, Kaplan DL (2010) Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl Environ Microbiol 76:6257–6265CrossRef Yadav V, Paniliatis BJ, Shi H, Lee KB, Cebe P, Kaplan DL (2010) Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl Environ Microbiol 76:6257–6265CrossRef
26.
Zurück zum Zitat Klemm D, Philpp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, volume 1: fundamentals and analytical methods. Wiley, New YorkCrossRef Klemm D, Philpp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, volume 1: fundamentals and analytical methods. Wiley, New YorkCrossRef
27.
Zurück zum Zitat Parikka K, Leppänen AS, Xu CL, Pitkänen L, Eronen P, Österberg M, Brumer H, Willför S, Tenkanen M (2012) Functional and anionic cellulose-interacting polymers by selective chemo-enzymatic carboxylation of galactose-containing polysaccharides. Biomacromolecules 13:2418–2428CrossRef Parikka K, Leppänen AS, Xu CL, Pitkänen L, Eronen P, Österberg M, Brumer H, Willför S, Tenkanen M (2012) Functional and anionic cellulose-interacting polymers by selective chemo-enzymatic carboxylation of galactose-containing polysaccharides. Biomacromolecules 13:2418–2428CrossRef
28.
Zurück zum Zitat Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Methanol steam reforming over paper-like composites of Cu/ZnO catalyst and ceramic fiber. Appl Catal Gen 300:155–161CrossRef Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Methanol steam reforming over paper-like composites of Cu/ZnO catalyst and ceramic fiber. Appl Catal Gen 300:155–161CrossRef
29.
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef
30.
Zurück zum Zitat Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isoga A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isoga A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996CrossRef
31.
Zurück zum Zitat Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef
32.
Zurück zum Zitat Tôei K, Kohara T (1976) A conductometric method for colloid titrations. Anal Chimica Acta 83:59–65CrossRef Tôei K, Kohara T (1976) A conductometric method for colloid titrations. Anal Chimica Acta 83:59–65CrossRef
33.
Zurück zum Zitat Bond WL (1960) Precision lattice constant determination. Acta Cryst 13:814–818CrossRef Bond WL (1960) Precision lattice constant determination. Acta Cryst 13:814–818CrossRef
34.
Zurück zum Zitat Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508CrossRef Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508CrossRef
35.
Zurück zum Zitat Maréchal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef Maréchal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRef
36.
Zurück zum Zitat Viëtor RJ, Newman RH, Ha MA, Apperley DC, Jarvis MC (2002) On formational features of crystal-surface cellulose from higher plants. Plant J 30:721–31CrossRef Viëtor RJ, Newman RH, Ha MA, Apperley DC, Jarvis MC (2002) On formational features of crystal-surface cellulose from higher plants. Plant J 30:721–31CrossRef
37.
Zurück zum Zitat Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRef Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRef
38.
Zurück zum Zitat Perez DDS, Montanari S, Vignon MR (2003) EMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425CrossRef Perez DDS, Montanari S, Vignon MR (2003) EMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425CrossRef
39.
Zurück zum Zitat Mao LS, Ma P, Law K, Daneault C, Brouillette F (2010) Studies on kinetics and reuse of spent liquor in the TEMPO-mediated selective oxidation of mechanical pulp. Ind Eng Chem Res 49:113–116CrossRef Mao LS, Ma P, Law K, Daneault C, Brouillette F (2010) Studies on kinetics and reuse of spent liquor in the TEMPO-mediated selective oxidation of mechanical pulp. Ind Eng Chem Res 49:113–116CrossRef
Metadaten
Titel
TEMPO-mediated oxidation of bacterial cellulose in a bromide-free system
verfasst von
Chen Lai
Shujiang Zhang
Liyuan Sheng
Shibo Liao
Tingfei Xi
Zhixiong Zhang
Publikationsdatum
01.12.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 12/2013
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-013-3033-7

Weitere Artikel der Ausgabe 12/2013

Colloid and Polymer Science 12/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.