Skip to main content
Erschienen in: Colloid and Polymer Science 3/2015

01.03.2015 | Original Contribution

How do soft nanoparticles affect temperature-induced nonlinearity of a UCST copolymer blend?

verfasst von: Somayeh Ghasemirad, Naser Mohammadi

Erschienen in: Colloid and Polymer Science | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Temperature-induced nonlinearity of an upper critical solution temperature (UCST) copolymer blend and its nanocomposites containing 5 wt% mono-size soft nanoparticles (SNPs) were investigated. Mechanical and thermal energies contribution into the nonlinearity of UCST copolymer blend was 8.9 × 103 Jm−3 and 2.2 × 103 Jmol−1, respectively. Addition of SNP did not change the system thermal-based nonlinearity, while altered its mechanical contribution at constant heating and solicitation conditions. It diminished to 0.4 × 103 Jm−3 in the nanocomposite containing nano-size dispersion of aged SNPs. Micron-size agglomeration of the fresh SNPs in the nanocomposite; however, enhanced the required mechanical energy for nonlinearity to 4.1 × 103 Jm−3. Short-time annealing of the nanocomposite with micron-size agglomerates reduced its mechanical energy part to 2.8 × 103 Jm−3, while annealing extension maximized it at 9.3 × 103 Jm−3. Heating rate increase amplified the thermal contribution into the nonlinearity at constant or reduced mechanical contribution. Finally, room-temperature annealing magnified the temperature-induced nonlinearity of the UCST copolymer blend at minimum mechanical contribution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang X, Robertson CG (2005) Strain-induced nonlinearity of filled rubbers. Phys Rev E 72:31406 (1–8)CrossRef Wang X, Robertson CG (2005) Strain-induced nonlinearity of filled rubbers. Phys Rev E 72:31406 (1–8)CrossRef
2.
Zurück zum Zitat Gam S, Corlu A, Chung HJ, Ohno K, Hore MJA, Composto RJ (2011) A jamming morphology map of polymer blend nanocomposite films. Soft Matter 7:7262–7268CrossRef Gam S, Corlu A, Chung HJ, Ohno K, Hore MJA, Composto RJ (2011) A jamming morphology map of polymer blend nanocomposite films. Soft Matter 7:7262–7268CrossRef
3.
Zurück zum Zitat van Hecke M (2010) Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J Phys Condens Matter 22:033101CrossRef van Hecke M (2010) Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J Phys Condens Matter 22:033101CrossRef
4.
Zurück zum Zitat Trappe V, Prasad V, Cipelletti L, Segre PN, Weitz DA (2001) Jamming phase diagram for attractive particles. Nature 411:772–775CrossRef Trappe V, Prasad V, Cipelletti L, Segre PN, Weitz DA (2001) Jamming phase diagram for attractive particles. Nature 411:772–775CrossRef
5.
Zurück zum Zitat Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51:3321–3343CrossRef Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51:3321–3343CrossRef
6.
Zurück zum Zitat Benedek I (2004) Pressure-sensitive adhesives and applications, 2nd edn., Marcel Dekker Inc., New York, pp 12 and 33–34 Benedek I (2004) Pressure-sensitive adhesives and applications, 2nd edn., Marcel Dekker Inc., New York, pp 12 and 33–34
7.
Zurück zum Zitat Canetta E, Marchal J, Lei CH, Deplace F, Koenig AM, Creton C, Ouzineb K, Keddie JL (2009) A comparison of tackified, miniemulsion core-shell acrylic latex films with corresponding particle-blend films: structure-property relationships. Langmuir 25:11021–11031CrossRef Canetta E, Marchal J, Lei CH, Deplace F, Koenig AM, Creton C, Ouzineb K, Keddie JL (2009) A comparison of tackified, miniemulsion core-shell acrylic latex films with corresponding particle-blend films: structure-property relationships. Langmuir 25:11021–11031CrossRef
8.
Zurück zum Zitat Malkin A, Ilyin S, Roumyantseva T, Kulichikhin V (2013) Rheological evidence of gel formation in dilute poly(acrylonitrile) solutions. Macromolecules 46:257–266CrossRef Malkin A, Ilyin S, Roumyantseva T, Kulichikhin V (2013) Rheological evidence of gel formation in dilute poly(acrylonitrile) solutions. Macromolecules 46:257–266CrossRef
9.
Zurück zum Zitat Sharif A, Mohammadi N, Nekoomanesh M, Jahani Y (2002) The role of interfacial interactions and loss function of model adhesives on their adhesion to glass. J Adhes Sci Technol 16:33–45CrossRef Sharif A, Mohammadi N, Nekoomanesh M, Jahani Y (2002) The role of interfacial interactions and loss function of model adhesives on their adhesion to glass. J Adhes Sci Technol 16:33–45CrossRef
10.
Zurück zum Zitat Saulnier F, Ondarcuhu T, Aradian A, Raphael E (2004) Adhesion between a viscoelastic material and a solid surface. Macromolecules 37:1067–1075CrossRef Saulnier F, Ondarcuhu T, Aradian A, Raphael E (2004) Adhesion between a viscoelastic material and a solid surface. Macromolecules 37:1067–1075CrossRef
11.
Zurück zum Zitat Winnik MA, Wang Y, Haley F (1992) Latex film formation at the molecular level: the effect of coalescing aids on polymer diffusion. J Coat Technol 64:51–61 Winnik MA, Wang Y, Haley F (1992) Latex film formation at the molecular level: the effect of coalescing aids on polymer diffusion. J Coat Technol 64:51–61
12.
Zurück zum Zitat Mohammadi N, Klein A, Sperling LH (1993) Polymer chain rupture and the fracture behavior of glassy polystyrene. Macromolecules 26:1019–1026CrossRef Mohammadi N, Klein A, Sperling LH (1993) Polymer chain rupture and the fracture behavior of glassy polystyrene. Macromolecules 26:1019–1026CrossRef
13.
Zurück zum Zitat Yousfi M, Porcar L, Lindner P, Boue F, Rharbi Y (2009) A novel method for studying the dynamics of polymers confined in spherical nanoparticles in nanoblends. Macromolecules 42:2190–2197CrossRef Yousfi M, Porcar L, Lindner P, Boue F, Rharbi Y (2009) A novel method for studying the dynamics of polymers confined in spherical nanoparticles in nanoblends. Macromolecules 42:2190–2197CrossRef
14.
Zurück zum Zitat Mohammadi H, Mohammadi N (2012) Fracture of polymer blends: effect of characteristic number of interfacial entanglements and matrix toughness. Polymer 53:2769–2776CrossRef Mohammadi H, Mohammadi N (2012) Fracture of polymer blends: effect of characteristic number of interfacial entanglements and matrix toughness. Polymer 53:2769–2776CrossRef
15.
Zurück zum Zitat Picarra S, Afonso CAM, Kurteva VB, Fedorov A, Martinho JMG, Farinha JPS (2012) The influence of nanoparticle architecture on latex film formation and healing properties. J Colloid Interface Sci 368:21–33CrossRef Picarra S, Afonso CAM, Kurteva VB, Fedorov A, Martinho JMG, Farinha JPS (2012) The influence of nanoparticle architecture on latex film formation and healing properties. J Colloid Interface Sci 368:21–33CrossRef
16.
Zurück zum Zitat Lefebvre AA, Balsara NP, Lee JH, Vaidyanathan C (2002) Determination of the phase boundary of high molecular weight polymer blends. Macromolecules 35:7758–7764CrossRef Lefebvre AA, Balsara NP, Lee JH, Vaidyanathan C (2002) Determination of the phase boundary of high molecular weight polymer blends. Macromolecules 35:7758–7764CrossRef
17.
Zurück zum Zitat Aradian A, Saulnier F, Raphael E, de Gennes PG (2004) Interfacial layering in a three-component polymer system. Macromolecules 37:4664–4675CrossRef Aradian A, Saulnier F, Raphael E, de Gennes PG (2004) Interfacial layering in a three-component polymer system. Macromolecules 37:4664–4675CrossRef
18.
Zurück zum Zitat Chang CJ, Lee YH, Chiang CJ, Lee YP, Chien HC, Shih WP, Cheng YY, Dai CA, Chang CH (2010) Strength of polymer phase boundaries with large interfacial width: effects of interfacial profile and phase separation morphology. J Polym Sci B Polym Phys 48:1834–1846CrossRef Chang CJ, Lee YH, Chiang CJ, Lee YP, Chien HC, Shih WP, Cheng YY, Dai CA, Chang CH (2010) Strength of polymer phase boundaries with large interfacial width: effects of interfacial profile and phase separation morphology. J Polym Sci B Polym Phys 48:1834–1846CrossRef
19.
Zurück zum Zitat Feng J, Winnik MA, Shivers RR, Clubb B (1995) Polymer blend latex films: morphology and transparency. Macromolecules 28:7671–7682CrossRef Feng J, Winnik MA, Shivers RR, Clubb B (1995) Polymer blend latex films: morphology and transparency. Macromolecules 28:7671–7682CrossRef
20.
Zurück zum Zitat Tanaka H, Araki T (2006) Viscoelastic phase separation in soft matter: numerical-simulation study on its physical mechanism. Chem Eng Sci 61:2108–2141CrossRef Tanaka H, Araki T (2006) Viscoelastic phase separation in soft matter: numerical-simulation study on its physical mechanism. Chem Eng Sci 61:2108–2141CrossRef
21.
Zurück zum Zitat Milner ST, Lacasse MD, Graessley WW (2009) Why χ is seldom zero for polymer-solvent mixtures. Macromolecules 42:876–886CrossRef Milner ST, Lacasse MD, Graessley WW (2009) Why χ is seldom zero for polymer-solvent mixtures. Macromolecules 42:876–886CrossRef
22.
Zurück zum Zitat Aradian A, Raphael E, de Gennes PG (2000) Strengthening of a polymer interface: interdiffusion and cross-linking. Macromolecules 33:9444–9451CrossRef Aradian A, Raphael E, de Gennes PG (2000) Strengthening of a polymer interface: interdiffusion and cross-linking. Macromolecules 33:9444–9451CrossRef
23.
Zurück zum Zitat Mohammadi H, Mohammadi N, Kheirabadi M (2013) Elucidation of polymer wear resistance via nanoscale healing and fracture of sintered polystyrene particles. J Appl Polym Sci 128:3432–3437CrossRef Mohammadi H, Mohammadi N, Kheirabadi M (2013) Elucidation of polymer wear resistance via nanoscale healing and fracture of sintered polystyrene particles. J Appl Polym Sci 128:3432–3437CrossRef
24.
Zurück zum Zitat Guvendiren M, McSwain RL, Mates TE, Shull KR (2010) Welding kinetics in a miscible blend of high-Tg and low-Tg polymers. Macromolecules 43:3392–3398CrossRef Guvendiren M, McSwain RL, Mates TE, Shull KR (2010) Welding kinetics in a miscible blend of high-Tg and low-Tg polymers. Macromolecules 43:3392–3398CrossRef
25.
Zurück zum Zitat Bhowmik D, Pomposo JA, Juranyi F, Garcia-Sakai V, Zamponi M, Su Y, Arbe A, Colmenero J (2014) Microscopic dynamics in nanocomposites of poly(ethylene oxide) and poly(methyl methacrylate) soft nanoparticles: a quasi-elastic neutron scattering study. Macromolecules 47:304–315CrossRef Bhowmik D, Pomposo JA, Juranyi F, Garcia-Sakai V, Zamponi M, Su Y, Arbe A, Colmenero J (2014) Microscopic dynamics in nanocomposites of poly(ethylene oxide) and poly(methyl methacrylate) soft nanoparticles: a quasi-elastic neutron scattering study. Macromolecules 47:304–315CrossRef
26.
Zurück zum Zitat Viswanathan S, Dadmun MD (2002) Guidelines to creating a true molecular composite: Inducing miscibility in blends by optimizing intermolecular hydrogen bonding. Macromolecules 35:5049–5060CrossRef Viswanathan S, Dadmun MD (2002) Guidelines to creating a true molecular composite: Inducing miscibility in blends by optimizing intermolecular hydrogen bonding. Macromolecules 35:5049–5060CrossRef
27.
Zurück zum Zitat Fredrickson GH, Larson RG (1987) Viscoelasticity of homogeneous polymer melts near a critical point. J Chem Phys 86:1553–1560CrossRef Fredrickson GH, Larson RG (1987) Viscoelasticity of homogeneous polymer melts near a critical point. J Chem Phys 86:1553–1560CrossRef
28.
Zurück zum Zitat Faghihi F, Mohammadi N, Hazendonk P (2011) Effect of restricted phase segregation and resultant nanostructural heterogeneity on glass transition of nonuniform acrylic random copolymers. Macromolecules 44:2154–2160CrossRef Faghihi F, Mohammadi N, Hazendonk P (2011) Effect of restricted phase segregation and resultant nanostructural heterogeneity on glass transition of nonuniform acrylic random copolymers. Macromolecules 44:2154–2160CrossRef
29.
Zurück zum Zitat Yang SI, Klein A, Sperling LH, Casassa EF (1990) Repulsive wall effects leading to graduated core-shell supramolecular structure in polystyrene latexes. Macromolecules 23:4582–4590CrossRef Yang SI, Klein A, Sperling LH, Casassa EF (1990) Repulsive wall effects leading to graduated core-shell supramolecular structure in polystyrene latexes. Macromolecules 23:4582–4590CrossRef
30.
Zurück zum Zitat Filippone G, de Luna MS (2012) A unifying approach for the linear viscoelasticity of polymer nanocomposites. Macromolecules 45:8853–8860CrossRef Filippone G, de Luna MS (2012) A unifying approach for the linear viscoelasticity of polymer nanocomposites. Macromolecules 45:8853–8860CrossRef
31.
Zurück zum Zitat Tuteja A, Mackay ME, Hawker CJ, Van Horn B (2005) Effect of ideal, organic nanoparticles on the flow properties of linear polymers: non-Einstein-like behavior. Macromolecules 38:8000–8011CrossRef Tuteja A, Mackay ME, Hawker CJ, Van Horn B (2005) Effect of ideal, organic nanoparticles on the flow properties of linear polymers: non-Einstein-like behavior. Macromolecules 38:8000–8011CrossRef
32.
Zurück zum Zitat Maillard D, Kumar SK, Fragneaud B, Kysar JW, Rungta A, Benicewicz BC, Deng H, Brinson C, Douglas JF (2012) Mechanical properties of thin glassy polymer films filled with spherical polymer-grafted nanoparticles. Nano Lett 12:3909–3914CrossRef Maillard D, Kumar SK, Fragneaud B, Kysar JW, Rungta A, Benicewicz BC, Deng H, Brinson C, Douglas JF (2012) Mechanical properties of thin glassy polymer films filled with spherical polymer-grafted nanoparticles. Nano Lett 12:3909–3914CrossRef
33.
Zurück zum Zitat Higashida N, Kressler J, Yukioka S, Inoue T (1992) Ellipsometric measurements of positive η parameters between dissimilar polymers and their temperature dependence. Macromolecules 25:5259–5262CrossRef Higashida N, Kressler J, Yukioka S, Inoue T (1992) Ellipsometric measurements of positive η parameters between dissimilar polymers and their temperature dependence. Macromolecules 25:5259–5262CrossRef
34.
Zurück zum Zitat Zhang R, Cheng H, Zhang C, Sun T, Dong X, Han CC (2008) Phase separation mechanism of polybutadiene/polyisoprene blends under oscillatory shear flow. Macromolecules 41:6818–6829CrossRef Zhang R, Cheng H, Zhang C, Sun T, Dong X, Han CC (2008) Phase separation mechanism of polybutadiene/polyisoprene blends under oscillatory shear flow. Macromolecules 41:6818–6829CrossRef
35.
Zurück zum Zitat Gharachorlou A, Goharpey F (2008) Rheologically determined phase behavior of LCST blends in the presence of spherical nanoparticles. Macromolecules 41:3276–3283CrossRef Gharachorlou A, Goharpey F (2008) Rheologically determined phase behavior of LCST blends in the presence of spherical nanoparticles. Macromolecules 41:3276–3283CrossRef
36.
Zurück zum Zitat Li SH, Woo EM (2008) Immiscibility with upper-critical solution temperature phase diagrams for poly(methyl methacrylate)/polyesters blends. Colloid Polym Sci 286:253–265CrossRef Li SH, Woo EM (2008) Immiscibility with upper-critical solution temperature phase diagrams for poly(methyl methacrylate)/polyesters blends. Colloid Polym Sci 286:253–265CrossRef
37.
Zurück zum Zitat Gonzalez-Leon JA, Mayes AM (2003) Phase behavior prediction of ternary polymer mixtures. Macromolecules 36:2508–2515CrossRef Gonzalez-Leon JA, Mayes AM (2003) Phase behavior prediction of ternary polymer mixtures. Macromolecules 36:2508–2515CrossRef
38.
Zurück zum Zitat Tam KC, Jenkins RD, Winnik MA, Bassett DR (1998) A structural model of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in shear flows. Macromolecules 31:4149–4159CrossRef Tam KC, Jenkins RD, Winnik MA, Bassett DR (1998) A structural model of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in shear flows. Macromolecules 31:4149–4159CrossRef
39.
Zurück zum Zitat Nawaz Q, Rharbi Y (2010) Various modes of void closure during dry sintering of close-packed nanoparticles. Langmuir 26:1226–1231CrossRef Nawaz Q, Rharbi Y (2010) Various modes of void closure during dry sintering of close-packed nanoparticles. Langmuir 26:1226–1231CrossRef
Metadaten
Titel
How do soft nanoparticles affect temperature-induced nonlinearity of a UCST copolymer blend?
verfasst von
Somayeh Ghasemirad
Naser Mohammadi
Publikationsdatum
01.03.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 3/2015
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-014-3446-y

Weitere Artikel der Ausgabe 3/2015

Colloid and Polymer Science 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.