Skip to main content
Log in

Electrophoretic mobility and electric conductivity in suspensions of charge-regulating porous particles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The electrophoresis and electric conduction in a homogeneous suspension of charge-regulating porous spheres such as polyelectrolytes with uniformly distributed ionogenic functional groups and hydrodynamic resistance segments in an arbitrary electrolyte solution are analyzed. The charge regulation relationship between the local fixed-charge density and electric potential because of association and dissociation reactions of the functional groups is linearized and a unit cell model allowing the overlap of the electric double layers of adjacent particles is employed to take account of the effect of particle interactions under an applied electric field. The equilibrium and perturbed electric potential distributions are ascertained by solving the linearized Poisson-Boltzmann equation, whereas the external and internal fluid velocity fields are determined by solving the modified Stokes and Brinkman equations, respectively. Explicit formulas for the mean electrophoretic mobility of the particles and the effective electric conductivity of the suspension are obtained. The variation in the concentration of the charge-determining ions in the bulk solution can cause a reversal in the direction of the electrophoretic velocity and in the difference of the electric conductivity from its reference value for a suspension of neutral porous particles. The magnitude of the electrophoretic mobility decreases with increases in the volume fraction and resistance parameter of the porous particles, but the electric conductivity in general is not a monotonic function of the particle volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dukhin SS, Derjaguin BV (1974) In: Matijevic E (ed) Surface and colloid science, vol 7. New York, Wiley

    Google Scholar 

  2. O’Brien RW (1981) J Colloid Interface Sci 81:234–248

    Article  Google Scholar 

  3. O’Brien RW (1983) J Colloid Interface Sci 92:204–216

    Article  Google Scholar 

  4. Ohshima H, Healy TW, White LR (1983) J Chem Soc Faraday Trans 2 79:1613–1628

    Article  CAS  Google Scholar 

  5. Chen SB, Keh HJ (1992) J Fluid Mech 238:251–276

    Article  CAS  Google Scholar 

  6. Hermans JJ, Fujita H (1955) Koninkl Ned Akad Wetenschap Proc Ser B 58:182–187

    Google Scholar 

  7. Liu YC, Keh HJ (1997) J Colloid Interface Sci 192:375–385

    Article  CAS  Google Scholar 

  8. Ohshima H (1994) J Colloid Interface Sci 163:474–483

    Article  CAS  Google Scholar 

  9. Liu YC, Keh HJ (1998) Langmuir 14:1560–1574

    Article  CAS  Google Scholar 

  10. Levine S, Neale GH (1974) J Colloid Interface Sci 47:520–529

    Article  Google Scholar 

  11. Zharkikh NI, Shilov VN (1982) Colloid J USSR (English translation) 43:865–870

    Google Scholar 

  12. Kozak MW, Davis EJ (1989) J Colloid Interface Sci 127:497–510

    Article  CAS  Google Scholar 

  13. Ohshima H (1997) J Colloid Interface Sci 188:481–485

    Article  CAS  Google Scholar 

  14. Ohshima H (1999) J Colloid Interface Sci 212:443–448

    Article  CAS  Google Scholar 

  15. Dukhin AS, Shilov V, Borkovskaya Y (1999) Langmuir 15:3452–3457

    Article  CAS  Google Scholar 

  16. Ding JM, Keh HJ (2001) J Colloid Interface Sci 236:180–193

    Article  CAS  Google Scholar 

  17. Carrique F, Arroyo FJ, Jimenez ML, Delgado AV (2003) J Phys Chem B 107:3199–3206

    Article  CAS  Google Scholar 

  18. Zholkovskiy EK, Masliyah JH, Shilov VN, Bhattacharjee S (2007) Adv Colloid Interface Sci 134-135:279–321

    Article  Google Scholar 

  19. Keh HJ, Liu CP (2010) J Phys Chem C 114:22044–22054

    Article  CAS  Google Scholar 

  20. Ohshima H (2000) J Colloid Interface Sci 225:233–242

    Article  CAS  Google Scholar 

  21. Lopez-Garcia JJ, Grosse C, Horno J (2006) J Colloid Interface Sci 301:651–659

    Article  CAS  Google Scholar 

  22. Ahualli S, Jimenez ML, Carrique F, Delgado AV (2009) Langmuir 25:1986–1997

    Article  CAS  Google Scholar 

  23. Miller NP, Berg JC (1993) J Colloid Interface Sci 159:253–254

    Article  CAS  Google Scholar 

  24. Ninham BW, Parsegian VA (1971) J Theor Biol 31:405–428

    Article  CAS  Google Scholar 

  25. Chan D, Perram JW, White LR, Healy TW (1975) J Chem Soc Faraday Trans 1(71):1046–1057

    Article  Google Scholar 

  26. Prieve DC, Ruckenstein E (1976) J Theor Biol 56:205–228

    Article  CAS  Google Scholar 

  27. Krozel JW, Saville DA (1992) J Colloid Interface Sci 150:365–373

    Article  CAS  Google Scholar 

  28. Carnie SL, Chan DYC (1993) J Colloid Interface Sci 161:260–264

    Article  CAS  Google Scholar 

  29. Ettelaie R, Buscall R (1995) Adv Colloid Interface Sci 61:131–160

    Article  CAS  Google Scholar 

  30. Pujar NS, Zydney AL (1997) J Colloid Interface Sci 192:338–349

    Article  CAS  Google Scholar 

  31. Dan N (2002) Langmuir 18:3524–3527

    Article  CAS  Google Scholar 

  32. Keh HJ, Li YL (2007) Langmuir 23:1061–1072

    Article  CAS  Google Scholar 

  33. Zhang X, Hsu J-P, Chen Z-S, Yeh L-H, Ku M-H, Tseng S (2010) J Phys Chem B 114:1621–1631

    Article  CAS  Google Scholar 

  34. Roa R, Carrique F, Ruiz-Reina E (2011) Phys Chem Chem Phys 13:9644–9654

    Article  CAS  Google Scholar 

  35. Keh HJ, Ding JM (2002) Langmuir 18:4572–4583

    Article  CAS  Google Scholar 

  36. Ding JM, Keh HJ (2003) Langmuir 19:7226–7239

    Article  CAS  Google Scholar 

  37. Deiber JA, Piaggio MV, Peirotti MB (2013) Electrophoresis 34:700–707

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan J. Keh.

Appendix

Appendix

For conciseness, some coefficients in Eqs. (22) and functions in Eqs (27) are listed here.

$$ \begin{array}{l}{C}_1=\frac{W_{\mathrm{H}}}{3{\left(\lambda a\right)}^2}\left\{-6\left[10{\left(\lambda a\right)}^2{\varphi}^2-3\left(3{\lambda}^2{a}^2+10\right){\varphi}^{5/3}-{\left(\lambda a\right)}^2\right]{I}_{\alpha }(a)+{\left(\lambda a\right)}^2\right.\left\{\left[{B}_2\right.\right.\hfill \\ {}\left.\kern7.5em +60\alpha \left(\lambda a\right)\right]{\varphi}^2-3\left[{\left(\lambda a\right)}^3 \cosh \left(\lambda a\right)-5{\left(\lambda a\right)}^2 \sinh \left(\lambda a\right)+20\lambda a \cosh \left(\lambda a\right)\right]{\varphi}^{5/3}\hfill \\ {}\left.\kern7.5em +3{\left(\lambda a\right)}^2\alpha \left(\lambda a\right){\varphi}^{1/3}-2{\left(\lambda a\right)}^3 \cosh \left(\lambda a\right)\right\}{I}_3(a)-3{\left(\lambda a\right)}^4\left\{2\alpha \left(\lambda a\right){\varphi}^2\right.\hfill \\ {}\left.\kern7.5em -\left[\lambda a \cosh \left(\lambda a\right)+ \sinh \left(\lambda a\right)\right]{\varphi}^{5/3}\right\}\left[{J}_5(a)-{\varphi}^{-5/3}{J}_0(a)\right]+3{\left(\lambda a\right)}^2\left[{B}_9{\varphi}^2\right.\hfill \\ {}\left.\left.\kern7.5em +{\left(\lambda a\right)}^2\alpha \left(\lambda a\right){\varphi}^{1/3}\right]\left[{J}_3(a)-{\varphi}^{-1/3}{J}_2(a)+3{\varphi}^{-1/3}U\right]\right\}+\frac{2}{3{\left(\lambda a\right)}^2}{I}_0(a),\hfill \end{array} $$
(A1a)
$$ \begin{array}{l}{C}_2=\frac{W_{\mathrm{H}}}{{\left(\lambda a\right)}^5}\left\{2{\left(\lambda a\right)}^7\left(1-{\varphi}^{5/3}\right)\left[3U-{J}_2(a)\right]-2{\left(\lambda a\right)}^3\left[10{\left(\lambda a\right)}^2{\varphi}^2-3\left(3{\lambda}^2{a}^2+10\right){\varphi}^{5/3}\right.\right.\hfill \\ {}\left.\kern7em -{\left(\lambda a\right)}^2\right]{I}_3(a)+2{\left(\lambda a\right)}^5\left[{\left(\lambda a\right)}^2{\varphi}^2-\left({\lambda}^2{a}^2+3\right){\varphi}^{5/3}\right]\left[{J}_5(a)-{\varphi}^{-5/3}{J}_0(a)\right]\hfill \\ {}\kern6.6em +2{\left(\lambda a\right)}^7\left({\varphi}^{1/3}-{\varphi}^2\right){J}_3(a)-2\left[{B}_6{\left(\lambda a\right)}^2{\varphi}^2-{B}_8{\varphi}^{5/3}+3{\left(\lambda a\right)}^4\beta (x){\varphi}^{1/3}\right.\hfill \\ {}\left.\left.\kern7em -{\left(\lambda a\right)}^2{B}_5\right]{I}_{\alpha }(a)\right\}+\frac{2}{{\left(\lambda a\right)}^5}{I}_{\beta }(a),\hfill \end{array} $$
(A1b)
$$ \begin{array}{c}\hfill {C}_3=\frac{W_{\mathrm{H}}}{15}\left\{5{\left(\lambda a\right)}^2{B}_3{\varphi}^{1/3}\left[3{\varphi}^{-1/3}U+{J}_3(a)-{\varphi}^{-1/3}{J}_2(a)\right]-{\left(\lambda a\right)}^2\left[3{\left(\lambda a\right)}^2\alpha \left(\lambda a\right){\varphi}^{1/3}\right.\right.\hfill \\ {}\hfill \left.\kern5.5em -{B}_1\right]{J}_5(a)-30\left[{\left(\lambda a\right)}^2{\varphi}^{1/3}-\left(3+{\lambda}^2{a}^2\right)\right]{I}_{\alpha }(a)+15{\left(\lambda a\right)}^2\left\{2\alpha \left(\lambda a\right){\varphi}^{1/3}\right.\hfill \\ {}\hfill \left.\left.\kern2.2em -\left[\lambda a \cosh \left(\lambda a\right)+ \sinh \left(\lambda a\right)\right]\right\}{I}_3(a)-\left[{\left(\lambda a\right)}^2{B}_2{\varphi}^{1/3}-{B}_4\right]{J}_0(a)\right\},\hfill \end{array} $$
(A1c)
$$ \begin{array}{l}{C}_4=\frac{W_{\mathrm{H}}}{3}\left\{-\left[{B}_4{\varphi}^{5/3}+{\left(\lambda a\right)}^2{B}_1\right]{J}_3(a)-{\left(\lambda a\right)}^2\left[{B}_2{\varphi}^{5/3}+3{\left(\lambda a\right)}^2\alpha \left(\lambda a\right)\right]\left[3U-{J}_2(a)\right]\right.\hfill \\ {}\kern4.5em +{\left(\lambda a\right)}^2{B}_3{\varphi}^{5/3}\left[{J}_5(a)-{\varphi}^{-5/3}{J}_0(a)\right]-6{\left(\lambda a\right)}^2\left(1-{\varphi}^{5/3}\right){I}_{\alpha }(a)\hfill \\ {}\left.\kern5em -3\left[{B}_9{\varphi}^{5/3}+{\left(\lambda a\right)}^2\alpha \left(\lambda a\right)\right]{I}_3(a)\right\},\hfill \end{array} $$
$$ {C}_5=-{\varphi}^{1/3}\left\{{C}_4+{W}_{\mathrm{H}}{\left(\lambda a\right)}^2\left[{B}_2{\varphi}^{5/3}+3{\left(\lambda a\right)}^2\alpha \left(\lambda a\right)\right]U\right\}+{W}_{\mathrm{H}}\left[{B}_4{\varphi}^{5/3}+{\left(\lambda a\right)}^2{B}_1\right]U, $$
(A1e)
$$ {C}_6=-{\varphi}^{5/3}{C}_3 $$
(A1f)

for the Happel model, and

$$ \begin{array}{l}{C}_1=\frac{W_{\mathrm{K}}}{3{\left(\lambda a\right)}^2}\left\{-3{\left(\lambda a\right)}^2\alpha \left(\lambda a\right)\left[2{\varphi}^2+\varphi \right]\left[{J}_5(a)+5{\varphi}^{-1}{J}_2(a)-15{\varphi}^{-1}U\right]-30\left(2{\varphi}^2\right.\right.\hfill \\ {}\left.\kern5em -\varphi -1\right){I}_{\alpha }(a)+\left\{\left[{B}_2+60\alpha \left(\lambda a\right)\right]{\varphi}^2-10{\left(\lambda a\right)}^2\left[\lambda a \cosh \left(\lambda a\right)-3 \sinh \left(\lambda a\right)\right]\varphi \right.\hfill \\ {}\left.\kern5em +18{\left(\lambda a\right)}^2\alpha \left(\lambda a\right){\varphi}^{1/3}-10{\left(\lambda a\right)}^3 \cosh \left(\lambda a\right)\right\}{I}_3(a)+3\left\{{B}_9{\varphi}^2+5{\left(\lambda a\right)}^2\left[\lambda a \cosh \left(\lambda a\right)\right.\right.\hfill \\ {}\left.\left.\kern5em + \sinh \left(\lambda a\right)\right]\varphi +6{\left(\lambda a\right)}^2\alpha \left(\lambda a\right){\varphi}^{1/3}\right\}{J}_3(a)-3\left\{{B}_9\varphi -12{\left(\lambda a\right)}^2\alpha \left(\lambda a\right){\varphi}^{1/3}\right.\hfill \\ {}\left.\kern5em +5{\left(\lambda a\right)}^2\left[\lambda a \cosh \left(\lambda a\right)+ \sinh \left(\lambda a\right)\right]\right\}\left.{J}_0(a)\right\}+\frac{2}{3{\left(\lambda a\right)}^2}{I}_0(a),\hfill \end{array} $$
(A2a)
$$ \begin{array}{l}{C}_2=\frac{W_{\mathrm{K}}}{{\left(\lambda a\right)}^5}\left\{-2{\left(\lambda a\right)}^5\left(\varphi -{\varphi}^2\right)\left[{J}_5(a)+5{\varphi}^{-1}{J}_2(a)-15{\varphi}^{-1}U\right]-10{\left(\lambda a\right)}^3\left(2{\varphi}^2-\varphi \right.\right.\hfill \\ {}\left.\kern4.5em -1\right){I}_3(a)+2{\left(\lambda a\right)}^3\left[{\left(\lambda a\right)}^2\varphi -6{\left(\lambda a\right)}^2{\varphi}^{1/3}+\left(5{\lambda}^2{a}^2+15\right)\right]{J}_0(a)-2{\left(\lambda a\right)}^3\left[{\left(\lambda a\right)}^2{\varphi}^2\right.\hfill \\ {}\left.\kern4em +5\left({\lambda}^2{a}^2+3\right)\varphi -6{\left(\lambda a\right)}^2{\varphi}^{1/3}\right]{J}_3(a)-2\left[{B}_6{\varphi}^2-10{B}_7\varphi +18{\left(\lambda a\right)}^2\beta \left(\lambda a\right){\varphi}^{1/3}\right.\hfill \\ {}\left.\left.\kern4.5em -5{B}_5\right]{I}_{\alpha }(a)\right\}+\frac{2}{{\left(\lambda a\right)}^5}{I}_{\beta }(a),\hfill \end{array} $$
(A2b)
$$ \begin{array}{l}{C}_3=\frac{W_{\mathrm{K}}}{15{\left(\lambda a\right)}^2}\left\{5{\left(\lambda a\right)}^2\left(5{B}_3-{B}_2\varphi \right)\left[3U-{J}_2(a)\right]-5\left[{B}_4\varphi -6{B}_3{\left(\lambda a\right)}^2{\varphi}^{1/3}\right]{J}_3(a)\right.\hfill \\ {}\kern5em +{\left(\lambda a\right)}^2\left[5{B}_3\varphi -18{\left(\lambda a\right)}^2\alpha \left(\lambda a\right){\varphi}^{1/3}+5{B}_1\right]{J}_5(a)+30\left[{\left(\lambda a\right)}^2\varphi -6{\left(\lambda a\right)}^2{\varphi}^{1/3}\right.\hfill \\ {}\left.\kern5em +5\left({\lambda}^2{a}^2+3\right)\right]{I}_{\alpha }(a)-15\left\{{B}_9\varphi -12{\left(\lambda a\right)}^2\alpha \left(\lambda a\right){\varphi}^{1/3}+5{\left(\lambda a\right)}^2\left[\lambda a \cosh \left(\lambda a\right)\right.\right.\hfill \\ {}\left.\left.\left.\kern5em + \sinh \left(\lambda a\right)\right]\right\}{I}_3(a)-\left[6{\left(\lambda a\right)}^2{B}_2{\varphi}^{1/3}-5{B}_4\right]{J}_0(a)\right\},\hfill \end{array} $$
(A2c)
$$ \begin{array}{l}{C}_4=\frac{W_{\mathrm{K}}}{3}\left\{-15\alpha \left(\lambda a\right)\left(2\varphi +1\right){I}_3(a)+3{\left(\lambda a\right)}^2\alpha \left(\lambda a\right)\varphi \left[{J}_5(a)+5{\varphi}^{-1}{J}_2(a)-15{\varphi}^{-1}U\right]\right.\hfill \\ {}\left.\kern4em -5\left({B}_3\varphi +{B}_1\right){J}_3(a)-30\left(1-\varphi \right){I}_{\alpha }(a)+\left({B}_2\varphi -5{B}_3\right){J}_0(a)\right\},\hfill \end{array} $$
(A2d)
$$ \begin{array}{l}{C}_5=\frac{W_{\mathrm{K}}}{3{\left(\lambda a\right)}^2}\left\{{\left(\lambda a\right)}^2\left({B}_3{\varphi}^2+{B}_1\varphi \right)\left[15{\varphi}^{-1}U-{J}_5(a)\right]-{\left(\lambda a\right)}^2\left[{B}_2{\varphi}^2-5{B}_3\varphi \right.\right.\hfill \\ {}\left.\kern6.3em +18{\left(\lambda a\right)}^2\alpha \left(\lambda a\right){\varphi}^{1/3}\right]{J}_2(a)+\left[{B}_4{\varphi}^2+6{\left(\lambda a\right)}^2{B}_1{\varphi}^{1/3}\right]{J}_3(a)\hfill \\ {}\kern6.5em -6\left[{\left(\lambda a\right)}^2{\varphi}^2+5\left({\lambda}^2{a}^2+3\right)\varphi -6{\left(\lambda a\right)}^2{\varphi}^{1/3}\right]{I}_{\alpha }(a)+3\left\{{B}_9{\varphi}^2\right.\hfill \\ {}\left.\kern6.2em +5{\left(\lambda a\right)}^2\left[\lambda a \cosh \left(\lambda a\right)+ \sinh \left(\lambda a\right)\right]\varphi +6{\left(\lambda a\right)}^2\alpha \left(\lambda a\right){\varphi}^{1/3}\right\}{I}_3(a)\hfill \\ {}\left.\kern6.5em -\left[{B}_4\varphi -6{\left(\lambda a\right)}^2{B}_3{\varphi}^{1/3}\right]{J}_0(a)\right\},\hfill \end{array} $$
(A2e)
$$ {C}_6=\frac{\varphi }{5}{C}_4 $$
(A2f)

for the Kuwabara model, where

$$ {W}_H={\left[{\left(\lambda a\right)}^2{B}_2{\varphi}^2-{B}_4{\varphi}^{5/3}+3{\left(\lambda a\right)}^4\gamma \left(\lambda a\right){\varphi}^{1/3}-{\left(\lambda a\right)}^2{B}_1\right]}^{-1}, $$
(A3a)
$$ {W}_K={\left[{B}_2{\varphi}^2-10{B}_3\varphi +18{\left(\lambda a\right)}^2\gamma \left(\lambda a\right){\varphi}^{1/3}-5{B}_1\right]}^{-1}; $$
(A3b)
$$ {B}_1=3\alpha \left(\lambda a\right)+2{\left(\lambda a\right)}^3 \cosh \left(\lambda a\right), $$
(A4a)
$$ {B}_2=2\left\{15\alpha \left(\lambda a\right)+{\left(\lambda a\right)}^2\left[\lambda a \cosh \left(\lambda a\right)-6 \sinh \left(\lambda a\right)\right]\right\}, $$
(A4b)
$$ {B}_3=6\alpha \left(\lambda a\right)+{\left(\lambda a\right)}^2\left[\lambda a \cosh \left(\lambda a\right)-3 \sinh \left(\lambda a\right)\right], $$
(A4c)
$$ \begin{array}{l}{B}_4=3\left\{30\alpha \left(\lambda a\right)+2{\left(\lambda a\right)}^2\left[7\lambda a \cosh \left(\lambda a\right)-12 \sinh \left(\lambda a\right)\right]\right.\hfill \\ {}\kern2.1em \left.+{\left(\lambda a\right)}^4\left[\lambda a \cosh \left(\lambda a\right)-5 \sinh \left(\lambda a\right)\right]\right\},\hfill \end{array} $$
(A4d)
$$ {B}_5=3\beta \left(\lambda a\right)+2{\left(\lambda a\right)}^3 \sinh \left(\lambda a\right), $$
(A4e)
$$ {B}_6=2\left\{15\beta \left(\lambda a\right)+{\left(\lambda a\right)}^2\left[\lambda a \sinh \left(\lambda a\right)-6 \cosh \left(\lambda a\right)\right]\right\}, $$
(A4f)
$$ {B}_7=6\beta \left(\lambda a\right)+{\left(\lambda a\right)}^2\left[\lambda a \sinh \left(\lambda a\right)-3 \cosh \left(\lambda a\right)\right], $$
(A4g)
$$ \begin{array}{c}\hfill {B}_8=3\left\{30\beta \left(\lambda a\right)+2{\left(\lambda a\right)}^2\left[7\lambda a \sinh \left(\lambda a\right)-12 \cosh \left(\lambda a\right)\right]\right.\hfill \\ {}\hfill \left.\kern10.8em +{\left(\lambda a\right)}^4\left[\lambda a \sinh \left(\lambda a\right)-5 \cosh \left(\lambda a\right)\right]\right\},\hfill \end{array} $$
(A4h)
$$ {B}_9=2\left\{15\alpha \left(\lambda a\right)+{\left(\lambda a\right)}^2\left[2\lambda a \cosh \left(\lambda a\right)-7 \sinh \left(\lambda a\right)\right]\right\}. $$
(A4i)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H.Y., Keh, H.J. Electrophoretic mobility and electric conductivity in suspensions of charge-regulating porous particles. Colloid Polym Sci 293, 1903–1914 (2015). https://doi.org/10.1007/s00396-015-3580-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3580-1

Keywords

Navigation