Skip to main content
Erschienen in: Colloid and Polymer Science 7/2015

01.07.2015 | Original Contribution

A model filler network in nanocomposites prepared by in situ silica filling and peroxide cross-linking in natural rubber latex

verfasst von: Atitaya Tohsan, Ryota Kishi, Yuko Ikeda

Erschienen in: Colloid and Polymer Science | Ausgabe 7/2015

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Preparation and characteristics of model filler networks in nanocomposites are reported for development of rubber science. The nanocomposites were prepared via a sol–gel reaction in natural rubber (NR) latex using tetraethoxysilane followed by a peroxide cross-linking reaction in the liquid state employing a casting method. The filler network structure was formed in the NR matrix, even though the silica content was only 10 and 17 parts per one hundred rubber by weight. One of the important factors for the formation of the filler network was utilization of rubber particles in the latex as a template. Dynamic mechanical analysis revealed the significant characteristics of the filler network of silica particles in the rubber matrix: Higher and longer plateau regions of storage modulus and dissipation loss modulus in the low frequency region were observed in the in situ silica-filled nanocomposites compared with conventionally prepared nanocomposites. This was mainly ascribed to a strong filler–filler interaction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bateman L (1963) The chemistry and physics of rubber-like substances. MacLaren & Sons, London Bateman L (1963) The chemistry and physics of rubber-like substances. MacLaren & Sons, London
2.
Zurück zum Zitat Roberts AD (1988) Natural rubber science and technology. Oxford Science, Oxford Roberts AD (1988) Natural rubber science and technology. Oxford Science, Oxford
3.
Zurück zum Zitat Jones KP, Allen PW (1992) Historical development of the world rubber industry. In: Sethuraj MR, Mathew NM (eds) Developments in crop science, volume. 23, Natural rubber: Biology, cultivation and technology. Elsevier, Amsterdam, pp 1–22 Jones KP, Allen PW (1992) Historical development of the world rubber industry. In: Sethuraj MR, Mathew NM (eds) Developments in crop science, volume. 23, Natural rubber: Biology, cultivation and technology. Elsevier, Amsterdam, pp 1–22
4.
Zurück zum Zitat Rodgers B, Waddell W (2005) The science of rubber compounding. In: Mark JE, Erman B, Eirich FR (eds) The science and technology of rubber, 3rd edn. Elsevier Academic Press, Oxford Rodgers B, Waddell W (2005) The science of rubber compounding. In: Mark JE, Erman B, Eirich FR (eds) The science and technology of rubber, 3rd edn. Elsevier Academic Press, Oxford
5.
Zurück zum Zitat Kato A, Ikeda Y, Kasahara Y, Shimanuki J, Suda T, Hasegawa T, Sawabe H, Kohjiya S (2008) Optical transparency and silica network structure in cross-linked natural rubber as revealed by spectroscopic and three-dimensional transmission electron microscopy techniques. J Opt Soc Am B 25:1602–1615CrossRef Kato A, Ikeda Y, Kasahara Y, Shimanuki J, Suda T, Hasegawa T, Sawabe H, Kohjiya S (2008) Optical transparency and silica network structure in cross-linked natural rubber as revealed by spectroscopic and three-dimensional transmission electron microscopy techniques. J Opt Soc Am B 25:1602–1615CrossRef
6.
Zurück zum Zitat Kato A, Kokubo Y, Tsushi R, Ikeda Y (2014) Hydrophobic and hydrophilic silica-filled cross-linked natural rubber: Structure and properties. In: Kohjiya S, Ikeda Y (eds) Chemistry, manufacture and applications of natural rubber. Woodhead Publishing, Elsevier, Oxford Kato A, Kokubo Y, Tsushi R, Ikeda Y (2014) Hydrophobic and hydrophilic silica-filled cross-linked natural rubber: Structure and properties. In: Kohjiya S, Ikeda Y (eds) Chemistry, manufacture and applications of natural rubber. Woodhead Publishing, Elsevier, Oxford
7.
Zurück zum Zitat Mark JE, Pan SJ (1982) Reinforcement of poly(dimethylsiloxane) networks by in situ precipitation of silica: A new method for preparation of filled elastomers. Makromol Chem Rapid Commun 3:681–685CrossRef Mark JE, Pan SJ (1982) Reinforcement of poly(dimethylsiloxane) networks by in situ precipitation of silica: A new method for preparation of filled elastomers. Makromol Chem Rapid Commun 3:681–685CrossRef
8.
Zurück zum Zitat Yoshikai K, Yamaguchi M, Nishimura K (1996) Reinforcement of styrene-butadiene rubber by sol–gel process in the latex. Nippon Gomu Kyokaishi 69(7):485–490CrossRef Yoshikai K, Yamaguchi M, Nishimura K (1996) Reinforcement of styrene-butadiene rubber by sol–gel process in the latex. Nippon Gomu Kyokaishi 69(7):485–490CrossRef
9.
Zurück zum Zitat Yoshikai K, Ohsaki T, Furukawa M (2002) Silica reinforcement of synthetic diene rubbers by sol–gel process in the latex. J Appl Polym Sci 85:2053–2063CrossRef Yoshikai K, Ohsaki T, Furukawa M (2002) Silica reinforcement of synthetic diene rubbers by sol–gel process in the latex. J Appl Polym Sci 85:2053–2063CrossRef
10.
Zurück zum Zitat Toutorski IA, Tkachenko TE, Maliavski NI (1998) Structural and chemical modification of polydiene latexes by gel derived silica. J Sol–gel Sci Technol 13:1057–1060CrossRef Toutorski IA, Tkachenko TE, Maliavski NI (1998) Structural and chemical modification of polydiene latexes by gel derived silica. J Sol–gel Sci Technol 13:1057–1060CrossRef
11.
Zurück zum Zitat Toutorski IA, Tkachenko TE, Pokidko BV, Maliavski NI, Sidorov VI (2003) Mechanical properties and structure of zinc-containing latex-silicate composites. J Sol–gel Sci Technol 26:505–509CrossRef Toutorski IA, Tkachenko TE, Pokidko BV, Maliavski NI, Sidorov VI (2003) Mechanical properties and structure of zinc-containing latex-silicate composites. J Sol–gel Sci Technol 26:505–509CrossRef
12.
Zurück zum Zitat Tangpasuthadol V, Intasiri A, Nuntivanich D, Niyompanich N, Kiatkamjornwong S (2008) Silica-reinforced natural rubber prepared by the sol–gel process of ethoxysilanes in rubber latex. J Appl Polym Sci 109:424–433CrossRef Tangpasuthadol V, Intasiri A, Nuntivanich D, Niyompanich N, Kiatkamjornwong S (2008) Silica-reinforced natural rubber prepared by the sol–gel process of ethoxysilanes in rubber latex. J Appl Polym Sci 109:424–433CrossRef
13.
Zurück zum Zitat Poompradub S, Chaichua B, Kanchanaamporn C, Boosalee T, Prasassarakich P (2008) Synthesis of silica in natural rubber solution via sol–gel reaction. Kautsch Gummi Kunstst 408:152–155 Poompradub S, Chaichua B, Kanchanaamporn C, Boosalee T, Prasassarakich P (2008) Synthesis of silica in natural rubber solution via sol–gel reaction. Kautsch Gummi Kunstst 408:152–155
14.
Zurück zum Zitat Chaichua B, Prasassarakich P, Poompradub S (2009) In situ silica reinforcement of natural rubber by sol–gel process via rubber solution. J Sol–gel Sci Technol 52:219–227CrossRef Chaichua B, Prasassarakich P, Poompradub S (2009) In situ silica reinforcement of natural rubber by sol–gel process via rubber solution. J Sol–gel Sci Technol 52:219–227CrossRef
15.
Zurück zum Zitat Sirisamont J, Tangpasuthadol V, Intasiri A, Na-Ranong N, Kiatkamjornwong S (2009) Sol–gel process of alkyltriethoxysilane in latex for alkylated silica formation in natural rubber. Polym Eng Sci 49:1099–1106CrossRef Sirisamont J, Tangpasuthadol V, Intasiri A, Na-Ranong N, Kiatkamjornwong S (2009) Sol–gel process of alkyltriethoxysilane in latex for alkylated silica formation in natural rubber. Polym Eng Sci 49:1099–1106CrossRef
16.
Zurück zum Zitat Satraphana P, Intasiri A, Tangpasuthadol V, Kiatkamjornwong S (2009) Effects of methyl methacrylate grafting and in situ silica particle formation on the morphology and mechanical properties of natural rubber composite films. Polym Adv Technol 20:473–486CrossRef Satraphana P, Intasiri A, Tangpasuthadol V, Kiatkamjornwong S (2009) Effects of methyl methacrylate grafting and in situ silica particle formation on the morphology and mechanical properties of natural rubber composite films. Polym Adv Technol 20:473–486CrossRef
17.
Zurück zum Zitat Watcharakul N, Poompradub S, Prasassarakich P (2011) In situ silica reinforcement of methyl methacrylate grafted natural rubber by sol–gel process. J Sol–gel Sci Technol 58:407–418CrossRef Watcharakul N, Poompradub S, Prasassarakich P (2011) In situ silica reinforcement of methyl methacrylate grafted natural rubber by sol–gel process. J Sol–gel Sci Technol 58:407–418CrossRef
18.
Zurück zum Zitat Scotti R, Wahba L, Crippa M, D’Arienzo M, Donetti R, Santo N, Morazzoni F (2012) Rubber–silica nanocomposites obtained by in situ sol–gel method: Particle shape influence on the filler–filler and filler–rubber interactions. Soft Matter 8:2131–2143CrossRef Scotti R, Wahba L, Crippa M, D’Arienzo M, Donetti R, Santo N, Morazzoni F (2012) Rubber–silica nanocomposites obtained by in situ sol–gel method: Particle shape influence on the filler–filler and filler–rubber interactions. Soft Matter 8:2131–2143CrossRef
19.
Zurück zum Zitat Tohsan A, Phinyocheep P, Kittipoom S, Pattanasiriwisawa W, Ikeda Y (2012) Novel biphasic structured composite prepared by in situ silica filling in natural rubber latex. Polym Adv Technol 23(10):1335–1342CrossRef Tohsan A, Phinyocheep P, Kittipoom S, Pattanasiriwisawa W, Ikeda Y (2012) Novel biphasic structured composite prepared by in situ silica filling in natural rubber latex. Polym Adv Technol 23(10):1335–1342CrossRef
20.
Zurück zum Zitat Tohsan A, Ikeda Y (2014) Generating particulate silica fillers in situ to improve the mechanical properties of natural rubber. In: Kohjiya S, Ikeda Y (eds) Chemistry, manufacture and applications of natural rubber. Woodhead Publishing, Elsevier, Oxford Tohsan A, Ikeda Y (2014) Generating particulate silica fillers in situ to improve the mechanical properties of natural rubber. In: Kohjiya S, Ikeda Y (eds) Chemistry, manufacture and applications of natural rubber. Woodhead Publishing, Elsevier, Oxford
21.
Zurück zum Zitat Poompradub S, Thirakulrati M, Prasassarakich P (2014) In situ generated silica in natural rubber latex via the sol–gel technique and properties of the silica rubber composites. Mater Chem Phys 144(1–2):122–131CrossRef Poompradub S, Thirakulrati M, Prasassarakich P (2014) In situ generated silica in natural rubber latex via the sol–gel technique and properties of the silica rubber composites. Mater Chem Phys 144(1–2):122–131CrossRef
22.
Zurück zum Zitat Ikeda Y, Tohsan A (2014) Stepwise strain-induced crystallization of biphasic-structured soft composites prepared from natural rubber latex and silica generated in situ. Colloid Polym Sci 292:567–577CrossRef Ikeda Y, Tohsan A (2014) Stepwise strain-induced crystallization of biphasic-structured soft composites prepared from natural rubber latex and silica generated in situ. Colloid Polym Sci 292:567–577CrossRef
23.
Zurück zum Zitat Ikeda Y, Higahsitani N, Hijikata K, Kokubo Y, Morita Y, Shibayama M, Osaka N, Suzuki T, Endo H, Kohjiya S (2009) Vulcanization: New focus on a traditional technology by small-angle neutron scattering. Macromolecules 42(7):2741–2748CrossRef Ikeda Y, Higahsitani N, Hijikata K, Kokubo Y, Morita Y, Shibayama M, Osaka N, Suzuki T, Endo H, Kohjiya S (2009) Vulcanization: New focus on a traditional technology by small-angle neutron scattering. Macromolecules 42(7):2741–2748CrossRef
24.
Zurück zum Zitat Yasuda Y, Minoda S, Ohashi T, Yokohama H, Ikeda Y (2014) Two-phase network formation in sulfur cross-linking reaction of isoprene rubber. Macromol Chem Phys 215:971–977CrossRef Yasuda Y, Minoda S, Ohashi T, Yokohama H, Ikeda Y (2014) Two-phase network formation in sulfur cross-linking reaction of isoprene rubber. Macromol Chem Phys 215:971–977CrossRef
25.
Zurück zum Zitat Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707CrossRef Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707CrossRef
26.
Zurück zum Zitat Treloar LRG (1975) The physics of rubber elasticity. Clarendon, Oxford Treloar LRG (1975) The physics of rubber elasticity. Clarendon, Oxford
27.
Zurück zum Zitat Class JB, (2002) Fundamentals of peroxide cure of elastomers. Paper No.B, ACS Rubber Div. Meeting, Georgia Class JB, (2002) Fundamentals of peroxide cure of elastomers. Paper No.B, ACS Rubber Div. Meeting, Georgia
28.
Zurück zum Zitat Ashizawa T (1963) Lecture of latex technology. Gomu 10(1):29–36 Ashizawa T (1963) Lecture of latex technology. Gomu 10(1):29–36
29.
Zurück zum Zitat Dufresne ER, Stark DJ, Greenblatt NA, Cheng JX, Hutchinson JW, Mahadevan L, Weitz DA (2006) Dynamics of fracture in drying suspensions. Langmuir 22(17):7144–7147CrossRef Dufresne ER, Stark DJ, Greenblatt NA, Cheng JX, Hutchinson JW, Mahadevan L, Weitz DA (2006) Dynamics of fracture in drying suspensions. Langmuir 22(17):7144–7147CrossRef
30.
Zurück zum Zitat Tirumkudulu MS, Russel WB (2005) Cracking in drying latex films. Langmuir 21(11):4938–4948CrossRef Tirumkudulu MS, Russel WB (2005) Cracking in drying latex films. Langmuir 21(11):4938–4948CrossRef
31.
Zurück zum Zitat Poompradub S, Kohjiya S, Ikeda Y (2005) Natural rubber/in situ silica nanocomposite of a high silica content. Chem Lett 34(5):672–673CrossRef Poompradub S, Kohjiya S, Ikeda Y (2005) Natural rubber/in situ silica nanocomposite of a high silica content. Chem Lett 34(5):672–673CrossRef
32.
Zurück zum Zitat Ikeda Y, Poompradub S, Morita Y, Kohjiya S (2008) Preparation of high performance nanocomposite elastomer: Effect of reaction conditions on in situ silica generation of high content in natural rubber. J Sol–gel Sci Technol 45(3):299–306CrossRef Ikeda Y, Poompradub S, Morita Y, Kohjiya S (2008) Preparation of high performance nanocomposite elastomer: Effect of reaction conditions on in situ silica generation of high content in natural rubber. J Sol–gel Sci Technol 45(3):299–306CrossRef
33.
Zurück zum Zitat Miloskovska E, Hansen MR, Friedrich C, Hristova-Bogaerds D, Duin MV, With G (2014) In situ silica nanoparticle formation in a rubber matrix monitored via real-time SAXS and solid-state NMR spectroscopy. Macromolecules 47(15):5174–5185CrossRef Miloskovska E, Hansen MR, Friedrich C, Hristova-Bogaerds D, Duin MV, With G (2014) In situ silica nanoparticle formation in a rubber matrix monitored via real-time SAXS and solid-state NMR spectroscopy. Macromolecules 47(15):5174–5185CrossRef
34.
Zurück zum Zitat Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, Ontario Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, Ontario
35.
Zurück zum Zitat Kramer O, Hvidt S, Ferry JD (1994) Dynamic mechanical properties. In: Mark JE, Erman B, Eirich FR (eds) Science and technology of rubber, 2nd edn. Academic, London Kramer O, Hvidt S, Ferry JD (1994) Dynamic mechanical properties. In: Mark JE, Erman B, Eirich FR (eds) Science and technology of rubber, 2nd edn. Academic, London
36.
Zurück zum Zitat MacKnight WJ, Shaw MT (2005) (eds) Introduction to polymer viscoelasticity, 3rd edn. Wiley, New Jersey MacKnight WJ, Shaw MT (2005) (eds) Introduction to polymer viscoelasticity, 3rd edn. Wiley, New Jersey
37.
Zurück zum Zitat Ferry JD, Mancke RG, Maekawa E, Ōyanagi Y, Dickie RA (1964) Dynamic mechanical properties of cross-linked rubbers. I. Effects of cross-link spacing in natural rubber. J Phys Chem 68(11):3414–3418CrossRef Ferry JD, Mancke RG, Maekawa E, Ōyanagi Y, Dickie RA (1964) Dynamic mechanical properties of cross-linked rubbers. I. Effects of cross-link spacing in natural rubber. J Phys Chem 68(11):3414–3418CrossRef
38.
Zurück zum Zitat Ferry JD, Langley NR (1968) Dynamic mechanical properties of cross-linked rubbers. VI. Poly(dimethylsiloxane) networks. Macromolecules 1(4):353–358CrossRef Ferry JD, Langley NR (1968) Dynamic mechanical properties of cross-linked rubbers. VI. Poly(dimethylsiloxane) networks. Macromolecules 1(4):353–358CrossRef
39.
Zurück zum Zitat Saphiannikova M, Toshchevikov V, Gazuz I, Petry F, Westermann S, Heinrich G (2014) Multiscale approach to dynamic-mechanical analysis of unfilled rubbers. Macromolecules 47(14):4813–4823CrossRef Saphiannikova M, Toshchevikov V, Gazuz I, Petry F, Westermann S, Heinrich G (2014) Multiscale approach to dynamic-mechanical analysis of unfilled rubbers. Macromolecules 47(14):4813–4823CrossRef
40.
Zurück zum Zitat Meera AP, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113:17997–18002CrossRef Meera AP, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113:17997–18002CrossRef
41.
Zurück zum Zitat Mujtaba A, Keller M, Ilisch S, Radusch HJ, Thurn-Albrecht T, Saalwächter K, Beiner M (2012) Mechanical properties and cross-link density of styrene–butadiene model composites containing fillers with bimodal particle size distribution. Macromolecules 5(16):6504–6515CrossRef Mujtaba A, Keller M, Ilisch S, Radusch HJ, Thurn-Albrecht T, Saalwächter K, Beiner M (2012) Mechanical properties and cross-link density of styrene–butadiene model composites containing fillers with bimodal particle size distribution. Macromolecules 5(16):6504–6515CrossRef
42.
Zurück zum Zitat Medalia AI (1978) Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem Technol 51:437–523 Medalia AI (1978) Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem Technol 51:437–523
43.
Zurück zum Zitat Wang MJ (1998) Effect of polymer-filler and filler–filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol 71:520–589CrossRef Wang MJ (1998) Effect of polymer-filler and filler–filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol 71:520–589CrossRef
44.
Zurück zum Zitat Wanger MP (1976) Reinforcing silicas and silicates. Rubber Chem Technol 76:703–774 Wanger MP (1976) Reinforcing silicas and silicates. Rubber Chem Technol 76:703–774
Metadaten
Titel
A model filler network in nanocomposites prepared by in situ silica filling and peroxide cross-linking in natural rubber latex
verfasst von
Atitaya Tohsan
Ryota Kishi
Yuko Ikeda
Publikationsdatum
01.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 7/2015
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-015-3586-8

Weitere Artikel der Ausgabe 7/2015

Colloid and Polymer Science 7/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.