Skip to main content
Erschienen in: Colloid and Polymer Science 5/2016

01.05.2016 | Original Contribution

The effect of the grafted chains on the crystallization of PLLA/PLLA-grafted SiO2 nanocomposites

verfasst von: Feng Wu, Shuyang Zhang, Bao Zhang, Wei Yang, Zhengying Liu, Mingbo Yang

Erschienen in: Colloid and Polymer Science | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two types of homemade poly(l-lactide) (PLLA)-grafted SiO2 nanoparticles with totally different topological structures are introduced into PLLA to prepare PLLA nanocomposites with different interface interactions and study the effect of the topology of polymer grafted nanoparticle on crystallization of PLLA. Differential scanning calorimetry (DSC) and polarized optical photomicrographs (POM) results show that the crystallization rate of PLLA has been greatly improved by the introduction of grafted SiO2, due to the improved heterogeneous nucleating effect. The nucleation constant of the two modified nanoparticles is evaluated by Hoffman–Lauritzen analysis; it is suggested that by introducing modified nanoparticles with long grafted chains, the interaction between the nanofiller and PLLA matrix will be enhanced, leading to the improved nucleation effective (the larger nucleation constant Kg), and the changed crystalline morphology, from large spherocrystals to tiny crystals. These observations are explained on the basis of different nucleation mechanism caused by the different surface structures of grafted SiO2, through the application of time-resolved Fourier transform infrared (FTIR) spectroscopy in the molecular level. The special long grafted PLLA chains can be acted as a more efficient nucleating agent for PLLA, and the conformational ordering of PLLA during the crystallization is significantly influenced by the topology of modified nanoparticles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jandas PJ, Mohanty S, Nayak SK (2013) Sustainability, compostability and specific microbial activity of agricultural mulch films prepared from poly (lactic acid). Ind Eng Chem Res 52:17714–17724CrossRef Jandas PJ, Mohanty S, Nayak SK (2013) Sustainability, compostability and specific microbial activity of agricultural mulch films prepared from poly (lactic acid). Ind Eng Chem Res 52:17714–17724CrossRef
2.
Zurück zum Zitat Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852CrossRef Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852CrossRef
3.
Zurück zum Zitat Zhang P et al (2009) In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials 30:58–70CrossRef Zhang P et al (2009) In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials 30:58–70CrossRef
4.
Zurück zum Zitat Kaito T et al (2005) Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA–PEG/hydroxyapatite composite. Biomaterials 26:73–79CrossRef Kaito T et al (2005) Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA–PEG/hydroxyapatite composite. Biomaterials 26:73–79CrossRef
5.
Zurück zum Zitat Marega C et al (1992) Structure and crystallization kinetics of poly(L-lactic acid). Die Makromolekulare Chemie 193:1599–1606CrossRef Marega C et al (1992) Structure and crystallization kinetics of poly(L-lactic acid). Die Makromolekulare Chemie 193:1599–1606CrossRef
6.
Zurück zum Zitat Saeidlou S et al (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRef Saeidlou S et al (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRef
7.
Zurück zum Zitat Sarasua J-R et al (1998) Crystallization and Melting Behavior of Polylactides. Macromolecules 31:3895–3905CrossRef Sarasua J-R et al (1998) Crystallization and Melting Behavior of Polylactides. Macromolecules 31:3895–3905CrossRef
8.
Zurück zum Zitat Takahiko Kawai NR (2007) Crystallization and melting behavior of PLA. Macromolecules 40:9463–9469CrossRef Takahiko Kawai NR (2007) Crystallization and melting behavior of PLA. Macromolecules 40:9463–9469CrossRef
9.
Zurück zum Zitat Miyata T, Masuko T (1998) Crystallization behaviour of poly (L-lactide). Polymer 39:5515–5521CrossRef Miyata T, Masuko T (1998) Crystallization behaviour of poly (L-lactide). Polymer 39:5515–5521CrossRef
10.
Zurück zum Zitat Bai H et al (2012) Tailoring Impact Toughness of Poly(l-lactide)/Poly(ε-caprolactone) (PLLA/PCL) Blends by Controlling Crystallization of PLLA Matrix. ACS Appl Mater Interfaces 4:897–905CrossRef Bai H et al (2012) Tailoring Impact Toughness of Poly(l-lactide)/Poly(ε-caprolactone) (PLLA/PCL) Blends by Controlling Crystallization of PLLA Matrix. ACS Appl Mater Interfaces 4:897–905CrossRef
11.
Zurück zum Zitat Iannace S et al (2001) Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions. Polymer 42:3799–3807CrossRef Iannace S et al (2001) Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions. Polymer 42:3799–3807CrossRef
12.
Zurück zum Zitat Li S, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. J Mater Sci Mater Med 1:198–206CrossRef Li S, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. J Mater Sci Mater Med 1:198–206CrossRef
13.
Zurück zum Zitat Tsuji H, Mizuno A, Ikada Y (2000) Properties and morphology of poly (L‐lactide). III. Effects of initial crystallinity on long‐term in vitro hydrolysis of high molecular weight poly (L‐lactide) film in phosphate‐buffered solution. J Appl Polym Sci 77:1452–1464CrossRef Tsuji H, Mizuno A, Ikada Y (2000) Properties and morphology of poly (L‐lactide). III. Effects of initial crystallinity on long‐term in vitro hydrolysis of high molecular weight poly (L‐lactide) film in phosphate‐buffered solution. J Appl Polym Sci 77:1452–1464CrossRef
14.
Zurück zum Zitat Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597CrossRef Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597CrossRef
15.
Zurück zum Zitat Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192CrossRef Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192CrossRef
16.
Zurück zum Zitat Delpouve N et al (2012) Water Barrier Properties in Biaxially Drawn Poly(lactic acid) Films. J Phys Chem B 116:4615–4625CrossRef Delpouve N et al (2012) Water Barrier Properties in Biaxially Drawn Poly(lactic acid) Films. J Phys Chem B 116:4615–4625CrossRef
17.
Zurück zum Zitat Simic V, Spassky N, Hubert-Pfalzgraf LG (1997) Ring-opening polymerization of D, L-lactide using rare-earth μ-oxo isopropoxides as initiator systems. Macromolecular 30:7338–7340CrossRef Simic V, Spassky N, Hubert-Pfalzgraf LG (1997) Ring-opening polymerization of D, L-lactide using rare-earth μ-oxo isopropoxides as initiator systems. Macromolecular 30:7338–7340CrossRef
18.
Zurück zum Zitat Jalabert M, Fraschini C, Prud’homme RE (2007) Synthesis and characterization of poly(L-lactide)s and poly(D-lactide)s of controlled molecular weight. J Polym Sci A Polym Chem 45:1944–1955CrossRef Jalabert M, Fraschini C, Prud’homme RE (2007) Synthesis and characterization of poly(L-lactide)s and poly(D-lactide)s of controlled molecular weight. J Polym Sci A Polym Chem 45:1944–1955CrossRef
19.
Zurück zum Zitat Hyon S-H, Jamshidi K, Ikada Y (1997) Synthesis of polylactides with different molecular weights. Biomaterials 18:1503–1508CrossRef Hyon S-H, Jamshidi K, Ikada Y (1997) Synthesis of polylactides with different molecular weights. Biomaterials 18:1503–1508CrossRef
20.
Zurück zum Zitat Moon SI et al (2000) Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight Poly(L-lactic acid). J Polym Sci A Polym Chem 38:1673–1679CrossRef Moon SI et al (2000) Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight Poly(L-lactic acid). J Polym Sci A Polym Chem 38:1673–1679CrossRef
21.
Zurück zum Zitat Odile Dechy-Cabaret BM-V, Bourissou D (2004) Controlled Ring-Opening Polymerization of Lactide and Glycolide. Chem Rev 104:6147–6177CrossRef Odile Dechy-Cabaret BM-V, Bourissou D (2004) Controlled Ring-Opening Polymerization of Lactide and Glycolide. Chem Rev 104:6147–6177CrossRef
22.
Zurück zum Zitat Bai H et al (2011) Control of crystal morphology in poly (L-lactide) by adding nucleating agent. Macromolecules 44:1233–1237CrossRef Bai H et al (2011) Control of crystal morphology in poly (L-lactide) by adding nucleating agent. Macromolecules 44:1233–1237CrossRef
23.
Zurück zum Zitat Su Z et al (2010) The nucleation effect of modified carbon black on crystallization of poly(lactic acid). Polym Eng Sci 50:1658–1666CrossRef Su Z et al (2010) The nucleation effect of modified carbon black on crystallization of poly(lactic acid). Polym Eng Sci 50:1658–1666CrossRef
24.
Zurück zum Zitat Tsuji H, Sawada M, Bouapao L (2009) Biodegradable Polyesters as Crystallization-Accelerating Agents of Poly(l-lactide). ACS Appl Mater Interfaces 1:1719–1730CrossRef Tsuji H, Sawada M, Bouapao L (2009) Biodegradable Polyesters as Crystallization-Accelerating Agents of Poly(l-lactide). ACS Appl Mater Interfaces 1:1719–1730CrossRef
25.
Zurück zum Zitat Liao R et al (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104:310–317CrossRef Liao R et al (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104:310–317CrossRef
26.
Zurück zum Zitat Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef
27.
Zurück zum Zitat Deyun Ji ZL, Lan X, Wu F, Xie B, Yang M (2014) Morphology, Rheology, Crystallization Behavior, and Mechanical Properties of Poly(lactic acid)/Poly(butylene succinate)/Dicumyl Peroxide Reactive Blends. J Appl Polym Sci 1:39580–39588 Deyun Ji ZL, Lan X, Wu F, Xie B, Yang M (2014) Morphology, Rheology, Crystallization Behavior, and Mechanical Properties of Poly(lactic acid)/Poly(butylene succinate)/Dicumyl Peroxide Reactive Blends. J Appl Polym Sci 1:39580–39588
28.
Zurück zum Zitat Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866CrossRef Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866CrossRef
29.
Zurück zum Zitat Liu J et al (2012) Crystallization Behavior of Long-Chain Branching Polylactide. Ind Eng Chem Res 51:13670–13679CrossRef Liu J et al (2012) Crystallization Behavior of Long-Chain Branching Polylactide. Ind Eng Chem Res 51:13670–13679CrossRef
30.
Zurück zum Zitat Fukushima K et al (2005) Stereoblock poly(lactic acid): synthesis via solid-state polycondensation of a stereocomplexed mixture of poly(l-lactic acid) and poly(d-lactic acid). Macromol Biosci 5:21–29CrossRef Fukushima K et al (2005) Stereoblock poly(lactic acid): synthesis via solid-state polycondensation of a stereocomplexed mixture of poly(l-lactic acid) and poly(d-lactic acid). Macromol Biosci 5:21–29CrossRef
31.
Zurück zum Zitat Rahman N et al (2009) Effect of Polylactide Stereocomplex on the Crystallization Behavior of Poly(l-lactic acid). Macromolecules 42:4739–4745CrossRef Rahman N et al (2009) Effect of Polylactide Stereocomplex on the Crystallization Behavior of Poly(l-lactic acid). Macromolecules 42:4739–4745CrossRef
32.
Zurück zum Zitat Shao J et al (2012) Investigation of Poly(lactide) Stereocomplexes: 3-Armed Poly(l-lactide) Blended with Linear and 3-Armed Enantiomers. J Phys Chem B 116:9983–9991CrossRef Shao J et al (2012) Investigation of Poly(lactide) Stereocomplexes: 3-Armed Poly(l-lactide) Blended with Linear and 3-Armed Enantiomers. J Phys Chem B 116:9983–9991CrossRef
33.
Zurück zum Zitat Scott C, Schmidt MAH (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci B Polym Phys 39:300-–313CrossRef Scott C, Schmidt MAH (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci B Polym Phys 39:300-–313CrossRef
34.
Zurück zum Zitat Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47:3826–3837CrossRef Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47:3826–3837CrossRef
35.
Zurück zum Zitat Narita J, Katagiri M, Tsuji H (2013) Highly Enhanced Accelerating Effect of Melt‐Recrystallized Stereocomplex Crystallites on Poly (L‐lactic acid) Crystallization, 2–Effects of Poly (D‐lactic acid) Concentration. Macromol Mater Eng 298:270–282CrossRef Narita J, Katagiri M, Tsuji H (2013) Highly Enhanced Accelerating Effect of Melt‐Recrystallized Stereocomplex Crystallites on Poly (L‐lactic acid) Crystallization, 2–Effects of Poly (D‐lactic acid) Concentration. Macromol Mater Eng 298:270–282CrossRef
36.
Zurück zum Zitat Narita J, Katagiri M, Tsuji H (2013) Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly(L-lactic acid) crystallization: effects of molecular weight of poly(D-lactic acid). Polym Int 62:936–948CrossRef Narita J, Katagiri M, Tsuji H (2013) Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly(L-lactic acid) crystallization: effects of molecular weight of poly(D-lactic acid). Polym Int 62:936–948CrossRef
37.
Zurück zum Zitat Raquez J-M et al (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542CrossRef Raquez J-M et al (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542CrossRef
38.
Zurück zum Zitat Moon S-I et al (2005) Novel Carbon Nanotube/Poly(L-lactic acid) Nanocomposites; Their Modulus, Thermal Stability, and Electrical Conductivity. Macromol Symp 224:287–296CrossRef Moon S-I et al (2005) Novel Carbon Nanotube/Poly(L-lactic acid) Nanocomposites; Their Modulus, Thermal Stability, and Electrical Conductivity. Macromol Symp 224:287–296CrossRef
39.
Zurück zum Zitat Tsuji H et al (2007) Poly(l-lactide)/nano-structured carbon composites: conductivity, thermal properties, crystallization, and biodegradation. Polymer 48:4213–4225CrossRef Tsuji H et al (2007) Poly(l-lactide)/nano-structured carbon composites: conductivity, thermal properties, crystallization, and biodegradation. Polymer 48:4213–4225CrossRef
40.
Zurück zum Zitat Zhao H et al (2014) Enhancing the crystallization of poly(l-lactide) using a montmorillonitic substrate favoring nucleation. CrystEngComm 16:3896–3905CrossRef Zhao H et al (2014) Enhancing the crystallization of poly(l-lactide) using a montmorillonitic substrate favoring nucleation. CrystEngComm 16:3896–3905CrossRef
41.
Zurück zum Zitat Papageorgiou GZ et al (2010) PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta 511:129–139CrossRef Papageorgiou GZ et al (2010) PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta 511:129–139CrossRef
42.
Zurück zum Zitat M. Day, A.V.N., and X. Liao (2006). “A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites.” Journal of Thermal Analysis and Calorimetry 86: 623-629. M. Day, A.V.N., and X. Liao (2006). “A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites.” Journal of Thermal Analysis and Calorimetry 86: 623-629.
43.
Zurück zum Zitat Wu D et al (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113CrossRef Wu D et al (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113CrossRef
44.
Zurück zum Zitat Krikorian V, Pochan DJ (2004) Unusual Crystallization Behavior of Organoclay Reinforced Poly(l-lactic acid) Nanocomposites. Macromolecular 37:6480–6491CrossRef Krikorian V, Pochan DJ (2004) Unusual Crystallization Behavior of Organoclay Reinforced Poly(l-lactic acid) Nanocomposites. Macromolecular 37:6480–6491CrossRef
45.
Zurück zum Zitat Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110CrossRef Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110CrossRef
46.
Zurück zum Zitat Hu X et al (2009) Origin of carbon nanotubes induced poly (L-lactide) crystallization: surface induced conformational order. Macromolecules 42:3215–3218CrossRef Hu X et al (2009) Origin of carbon nanotubes induced poly (L-lactide) crystallization: surface induced conformational order. Macromolecules 42:3215–3218CrossRef
47.
Zurück zum Zitat Zhang J et al (2004) Structural Changes and Crystallization Dynamics of Poly(l-lactide) during the Cold-Crystallization Process Investigated by Infrared and Two Dimensional Infrared Correlation Spectroscopy. Macromolecular 37:6433–6439CrossRef Zhang J et al (2004) Structural Changes and Crystallization Dynamics of Poly(l-lactide) during the Cold-Crystallization Process Investigated by Infrared and Two Dimensional Infrared Correlation Spectroscopy. Macromolecular 37:6433–6439CrossRef
48.
Zurück zum Zitat Meaurio E, López-Rodríguez N, Sarasua JR (2006) Infrared spectrum of poly(l-lactide): application to crystallinity studies. Macromolecules 39:9291–9301CrossRef Meaurio E, López-Rodríguez N, Sarasua JR (2006) Infrared spectrum of poly(l-lactide): application to crystallinity studies. Macromolecules 39:9291–9301CrossRef
49.
Zurück zum Zitat Meaurio E et al (2006) Conformational Behavior of Poly(l-lactide) Studied by Infrared Spectroscopy. J Phys Chem B 110:5790–5800CrossRef Meaurio E et al (2006) Conformational Behavior of Poly(l-lactide) Studied by Infrared Spectroscopy. J Phys Chem B 110:5790–5800CrossRef
50.
Zurück zum Zitat Krikorian V, Pochan DJ (2005) Crystallization behavior of poly(l-lactic acid) nanocomposites: nucleation and growth probed by infrared spectroscopy. Macromolecules 38:6520–6527CrossRef Krikorian V, Pochan DJ (2005) Crystallization behavior of poly(l-lactic acid) nanocomposites: nucleation and growth probed by infrared spectroscopy. Macromolecules 38:6520–6527CrossRef
51.
Zurück zum Zitat Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly(l-lactide). Polymer 46:10290–10300CrossRef Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly(l-lactide). Polymer 46:10290–10300CrossRef
52.
Zurück zum Zitat Olalde B, Aizpurua JSM, Jurado MAJ (2008) SingleWalled Carbon Nanotubes and Multiwalled Carbon Nanotubes Functionalized with PLA a comparative study. J Phys Chem C 112:10663–10667CrossRef Olalde B, Aizpurua JSM, Jurado MAJ (2008) SingleWalled Carbon Nanotubes and Multiwalled Carbon Nanotubes Functionalized with PLA a comparative study. J Phys Chem C 112:10663–10667CrossRef
53.
Zurück zum Zitat Goffin A-L et al (2010) From polyester grafting onto POSS nanocage by ring-opening polymerization to high performance polyester/POSS nanocomposites. J Mater Chem 20:9415–9422CrossRef Goffin A-L et al (2010) From polyester grafting onto POSS nanocage by ring-opening polymerization to high performance polyester/POSS nanocomposites. J Mater Chem 20:9415–9422CrossRef
54.
Zurück zum Zitat Yang J-H, Lin S-H, Lee Y-D (2012) Preparation and characterization of poly(l-lactide)–graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22:10805CrossRef Yang J-H, Lin S-H, Lee Y-D (2012) Preparation and characterization of poly(l-lactide)–graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22:10805CrossRef
55.
Zurück zum Zitat Xie L et al (2007) Single-Walled Carbon Nanotubes Functionalized with High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites. Macromolecular 40:3296–3305CrossRef Xie L et al (2007) Single-Walled Carbon Nanotubes Functionalized with High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites. Macromolecular 40:3296–3305CrossRef
56.
Zurück zum Zitat Chen G-X et al (2007) Synthesis of Poly(L-lactide)-Functionalized Multiwalled Carbon Nanotubes by Ring-Opening Polymerization. Macromol Chem Phys 208:389–398CrossRef Chen G-X et al (2007) Synthesis of Poly(L-lactide)-Functionalized Multiwalled Carbon Nanotubes by Ring-Opening Polymerization. Macromol Chem Phys 208:389–398CrossRef
57.
Zurück zum Zitat Wu L et al (2008) Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization. Polymer 49:742–748CrossRef Wu L et al (2008) Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization. Polymer 49:742–748CrossRef
58.
Zurück zum Zitat Yan S et al (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48:1688–1694CrossRef Yan S et al (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48:1688–1694CrossRef
59.
Zurück zum Zitat Yoon JT et al (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polym Adv Technol 20:631–638CrossRef Yoon JT et al (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polym Adv Technol 20:631–638CrossRef
60.
Zurück zum Zitat Sun Y, He C (2012) Synthesis and Stereocomplex Crystallization of Poly(lactide)–Graphene Oxide Nanocomposites. ACS Macro Lett 1:709–713CrossRef Sun Y, He C (2012) Synthesis and Stereocomplex Crystallization of Poly(lactide)–Graphene Oxide Nanocomposites. ACS Macro Lett 1:709–713CrossRef
61.
Zurück zum Zitat Wu F et al (2014) Inorganic silica functionalized with PLLA chains via grafting methods to enhance the melt strength of PLLA/silica nanocomposites. Polymer 55:5760–5772CrossRef Wu F et al (2014) Inorganic silica functionalized with PLLA chains via grafting methods to enhance the melt strength of PLLA/silica nanocomposites. Polymer 55:5760–5772CrossRef
62.
Zurück zum Zitat Nofar M et al (2011) Crystallization Kinetics of Linear and Long-Chain-Branched Polylactide. Ind Eng Chem Res 50:13789–13798CrossRef Nofar M et al (2011) Crystallization Kinetics of Linear and Long-Chain-Branched Polylactide. Ind Eng Chem Res 50:13789–13798CrossRef
63.
Zurück zum Zitat Avrami M (1940) Kinetics of phase change. II transformation‐time relations for random distribution of nuclei. J Chemical Physics 8:212–224CrossRef Avrami M (1940) Kinetics of phase change. II transformation‐time relations for random distribution of nuclei. J Chemical Physics 8:212–224CrossRef
64.
Zurück zum Zitat Rahaman MH, Tsuji H (2013) Isothermal crystallization and spherulite growth behavior of stereo multiblock poly(lactic acid)s: effects of block length. J Appl Polym Sci 129:2502–2517CrossRef Rahaman MH, Tsuji H (2013) Isothermal crystallization and spherulite growth behavior of stereo multiblock poly(lactic acid)s: effects of block length. J Appl Polym Sci 129:2502–2517CrossRef
65.
Zurück zum Zitat Wang L et al (2012) Rheology and Crystallization of Long-Chain Branched Poly(l-lactide)s with Controlled Branch Length. Ind Eng Chem Res 51:10731–10741CrossRef Wang L et al (2012) Rheology and Crystallization of Long-Chain Branched Poly(l-lactide)s with Controlled Branch Length. Ind Eng Chem Res 51:10731–10741CrossRef
66.
Zurück zum Zitat Jianming Zhang HT, Noda I, Ozaki Y (2004) Weak Intermolecular Interactions during the Melt Crystallization of Poly(l lactide) Investigated by Two Dimensional Infrared Correlation Spectroscopy. J Phys Chem B 108:11514–11520CrossRef Jianming Zhang HT, Noda I, Ozaki Y (2004) Weak Intermolecular Interactions during the Melt Crystallization of Poly(l lactide) Investigated by Two Dimensional Infrared Correlation Spectroscopy. J Phys Chem B 108:11514–11520CrossRef
67.
Zurück zum Zitat Yin H-Y et al (2015) High-melting-point crystals of poly(l-lactic acid) (PLLA): the most efficient nucleating agent to enhance the crystallization of PLLA. Cryst Eng Comm 17:2310–2320CrossRef Yin H-Y et al (2015) High-melting-point crystals of poly(l-lactic acid) (PLLA): the most efficient nucleating agent to enhance the crystallization of PLLA. Cryst Eng Comm 17:2310–2320CrossRef
Metadaten
Titel
The effect of the grafted chains on the crystallization of PLLA/PLLA-grafted SiO2 nanocomposites
verfasst von
Feng Wu
Shuyang Zhang
Bao Zhang
Wei Yang
Zhengying Liu
Mingbo Yang
Publikationsdatum
01.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 5/2016
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-016-3830-x

Weitere Artikel der Ausgabe 5/2016

Colloid and Polymer Science 5/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.