Skip to main content
Log in

Free-standing disk mold crystalline polyethyleneimine gels: physical properties and chemical function in mineralization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, we synthesized free-standing disk-shaped gels (FGPEI) from the chemical cross-linking of linear polyethyleneimine (LPEI), and investigated their crystalline features in gel state and templating function in mineralizations of silica and titania. It was found that the FGPEIs with different cross-linkers and different cross-linking degrees showed remarkable crystalline properties in water containing state but became amorphous in the swollen state in methanol. This is reversible by alternating the medium of water and methanol. The crystalline domains in the FGPEI were estimated by XRD as in the ranges of 3.0~11 nm. Immersion of the disk-shaped FGPEIs in tetramethoxysilane (TMOS) solutions spontaneously resulted in the corresponding hybrids SiO2/FGPEIs keeping the same disk shape with silica content of 63%. Calcinating the hybrids could tune them into monolith silica with mesoporous structure consisting of nanoparticle (ca. 20 nm) agglomeration. On the other hand, immersion of the FGPEI in tetraisopropyloxy titanium solution offered hybrid of TiO2/FGPEI but only with ca. 14% content of TiO2. However, calcination of this hybrid at different temperatures could result in monolith titania possessing mesopore and/or macropore structures inside with agglomeration of anatase- and/or rutile-type nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Osada Y, K Kajiwara (1997) Gel handbook, 4–16

  2. Ahn S-K, Kasi M, Kim S-C, Sharma N, Zhou Y (2008) Stimuli-responsive polymer gels Soft Matter 4:1151–1152

    Article  CAS  Google Scholar 

  3. Sangeetha N, Maitra U (2005) Supramolecular gels: functions and uses Chem Soc Rev 34:821–836

    Article  CAS  Google Scholar 

  4. Russo R, Malinconico M, Santagata G (2007) Effect of cross-linking with calcium ions on the physical properties of alginate films Biomacromolecules 8:3193–3197

    Article  CAS  Google Scholar 

  5. Shi J, Gao Y, Zhang Y, Pan Y, Xu B (2011) Calcium ions to cross-link supramolecular nanofibers to tune the elasticity of hydrogels over orders of magnitude Langmuir 27:14425–14431

    Article  CAS  Google Scholar 

  6. Krishnamurthi J, Ono T, Amemori S, Komatsu H, Shinkai S, Sada K (2011) Thiourea-tagged poly(octadecyl acrylate) gels as fluoride and acetate responsive polymer gels through selective complexation Chem Commun 47:1571–1573

    Article  CAS  Google Scholar 

  7. Jin S, Liu M, Zhang F, Chen S, Niu A (2006) Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid) Polymer 47:1526–1532

    Article  CAS  Google Scholar 

  8. Nair K, Breedveld V, Weck M (2008) Complementary hydrogen-bonded thermoreversible polymer networks with tunable properties Macromolecules 41:3429–3438

    Article  CAS  Google Scholar 

  9. Goto H, Zhang H, Yashima E (2003) Chiral stimuli-responsive gels: helicity induction in poly(phenylacetylene) gels bearing a carboxyl group with chiral amines J Am Chem Soc 125:2516–2523

    Article  CAS  Google Scholar 

  10. Du X, Liu J, Deng J, Yang W (2010) Synthesis and chiral recognition of optically active hydrogels containing helical polymer chains Polym Chem 1:1030–1038

    Article  CAS  Google Scholar 

  11. Okazaki Y, Cheng J, Dedovets D, Kemper G, Delville M-H, Durrieu M-C, Ihara H, Takafuji M, Pouget E, Oda R (2014) Chiral colloids: homogeneous suspension of individualized sio2 helical and twisted nanoribbons ACS Nano 8:6863–6872

    Article  CAS  Google Scholar 

  12. Chang X, Chen D, Jiao X (2008) Chitosan-based aerogels with high adsorption performance J Phys Chem B 112:7721–7725

    Article  CAS  Google Scholar 

  13. Taira M, Furuuchi H, Saitoh S, Sugiyama Y, Sekiyama S, Araki Y, Tabata Y (2005) Bio-sorption of acidic gelatine hydro-gels implanted in the back tissues of Fisher’s rats. J Oral Rehabil 32:382–387

    Article  CAS  Google Scholar 

  14. Fei H, Yang C, Bao H, Wang G (2014) Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes J Power Sources 266:488–495

    Article  CAS  Google Scholar 

  15. Kelkar S, Pandey K, Agarkar S, Saikhedkar N, Tathavadekar M, Agrawal I, Gundloori R, Ogale S (2014) Functionally engineered egg albumen gel for quasi-solid dye sensitized solar cells ACS Sustain Chem Eng 2:2707–2714

    Article  CAS  Google Scholar 

  16. Kim D, Park H, Rhim J, Lee Y (2005) Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes Solid State Ionics 176:117–126

    Article  CAS  Google Scholar 

  17. Beamish J, Zhu JK, Marchant R (2010) The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering Biomed Mater Res A 92:441–450

    Google Scholar 

  18. Grover G, Braden R, Christman K (2013) Oxime cross-linked injectable hydrogels for catheter delivery Adv Mater 25:2937–2942

    Article  CAS  Google Scholar 

  19. Jan J-S, Chen P-S, Hsieh P-L, Chen B-Y (2012) Silicification of genipin-cross-linked polypeptide hydrogels toward biohybrid materials and mesoporous oxides ACS Appl Mater Interfaces 4:6865–6874

    Article  CAS  Google Scholar 

  20. Drisko G, Wang X, Caruso R (2011) Strong silica monoliths with large mesopores prepared using agarose gel templates Langmuir 27:2124–2127

    Article  CAS  Google Scholar 

  21. Kobayashi S, Shirasaka H, Suh K-D, Uyama H (1990) Viscosity behaviors and gel properties of linear and branched polyethyleneimines: effects of micro-structures Polym J 22:442–446

    Article  CAS  Google Scholar 

  22. Neu M, Sitterberg J, Bakowsky U, Kissel T (2006) Stabilized nanocarriers for plasmids based upon cross-linked poly(ethylene imine) Biomacromolecules 7:3428–3438

    Article  CAS  Google Scholar 

  23. Wang G, Yin H, Ng J, Cai L, Li J, Tang B, Liu B (2013) Polyethyleneimine-grafted hyperbranched conjugated polyelectrolytes: synthesis and imaging of gene delivery Polym Chem 4:5297–5304

    Article  CAS  Google Scholar 

  24. Kislenko V, Oliynyk L (2002) Complex formation of polyethyleneimine with copper(II), nickel(II), and cobalt(II) ions J Polym Sci A Polym Chem 40:914–922

    Article  CAS  Google Scholar 

  25. Maketon W, Zenner C, Ogden K (2008) Removal efficiency and binding mechanisms of copper and copper-edta complexes using polyethyleneimine Environ Sci Technol 42:2124–2129

    Article  CAS  Google Scholar 

  26. Yuan J-J, Jin R-H (2005) Fibrous crystalline hydrogels formed from polymers possessing a linear poly(ethyleneimine) backbone Langmuir 21:3136–3145

    Article  CAS  Google Scholar 

  27. Chatani Y, Tadokoro H, Saegusa T, Ikeda H (1981) Structural studies of poly(ethylenimine). 1. Structures of two hydrates of poly(ethylenimine): sesquihydrate and dihydrate Macromolecules 14:315–321

    Article  CAS  Google Scholar 

  28. Chatani Y, Kobatake T, Tadokoro H, Tanaka R (1982) Structural studies of poly(ethylenimine). 2. Double-stranded helical chains in the anhydrate Macromolecules 15:170–176

    Article  CAS  Google Scholar 

  29. Chatani Y, Kobatake T, Tadokoro H (1983) Structural studies of poly(ethylenimine). 3. Structural characterization of anhydrous and hydrous states and crystal structure of the hemihydrate Macromolecules 16:199–204

    Article  CAS  Google Scholar 

  30. Jin R-H, Yuan J-J (2005) Synthesis of poly(ethyleneimine)s–silica hybrid particles with complex shapes and hierarchical structures Chem Commun:1399–1401

  31. Yuan J-J, Zhu P-X, Fukazawa N, Jin R-H (2006) Synthesis of nanofiber-based silica networks mediated by organized poly(ethylene imine): structure, properties, and mechanism Adv Funct Mater 16:2205–2212

    Article  CAS  Google Scholar 

  32. Jin R-H, Yuan J-J (2005) Simple synthesis of hierarchically structured silicas by poly(ethyleneimine) aggregates pre-organized by media modulation Macromol Chem Phys 206:2160–2170

    Article  CAS  Google Scholar 

  33. Jin R-H, Yuan J-J (2007) Hierarchically structured silica from mediation of linear poly(ethyleneimine) incorporated with acidic/basic additives Polym J 39:464–470

    Article  CAS  Google Scholar 

  34. Zhu P-X, Fukazawa N, Jin R-H (2007) Polyethyleneimine aggregates regulated by metal cations acting as biomimetic organic reactors for silica architectures Small 3:394–398

    Article  CAS  Google Scholar 

  35. Matsukizono H, Zhu P-X, Fukazawa N, Jin R-H (2009) Turbine-like structured silica transcribed simply by pre-structured crystallites of linear poly(ethyleneimine) bounded with metal ions Cryst Eng Comm 11:2695–2700

    Article  CAS  Google Scholar 

  36. Kokufuta E, Suzuki H, Yoshida R, Yamada K, Hirata M, Kaneko Y (1998) Role of hydrogen bonding and hydrophobic interaction in the volume collapse of a poly(ethylenimine) gel Langmuir 14:788–795

    Article  CAS  Google Scholar 

  37. Yu J, Zhao X, Du J, Chen W (2000) Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by sol-gel processing J Sol-Gel Sci Technol 17:163–171

    Article  CAS  Google Scholar 

  38. Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, Chaurand P, Labille J (2010) Structural degradation at the surface of a tio2-based nanomaterial used in cosmetics Environ Sci Technol 44:2689–2694

    Article  CAS  Google Scholar 

  39. Joo J, Zhang Q, Lee I, Dahl M, Zaera F, Yin Y (2012) Mesoporous anatase titania hollow nanostructures though silica-protected calcination Adv Funct Mater 22:166–174

    Article  CAS  Google Scholar 

  40. Jin R-H, Yuan J-J (2009) Biomimetically controlled formation of nanotextured silica/titania films on arbitrary substrates and their tunable surface function Adv Mater 21:3750–3753

    Article  CAS  Google Scholar 

  41. Zhu P-X, Jin R-H (2010) Simple and efficient aqueous process for nanostructured fibrous TiO2 regulated by linear polyethyleneimine aggregates Eur J Inorg Chem 2010:476–482

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the MEXT Supported Program for the Strategic Research Foundation at Private Universities: “Creation of new fusion materials by integration of highly-ordered nano inorganic materials and ultra-precisely controlled organic polymers” (2013-2017), no. S1311032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Hua Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1576 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soma, D., Jin, RH. Free-standing disk mold crystalline polyethyleneimine gels: physical properties and chemical function in mineralization. Colloid Polym Sci 295, 1585–1594 (2017). https://doi.org/10.1007/s00396-017-4125-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4125-6

Keywords

Navigation