Skip to main content
Erschienen in: Rheologica Acta 9-10/2011

01.10.2011 | Original Contribution

Analytic derivation of the Cox–Merz rule using the MLD “toy” model for polydisperse linear polymers

verfasst von: David W. Mead

Erschienen in: Rheologica Acta | Ausgabe 9-10/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A general constitutive formalism, the “naïve” polydisperse MLD model, has been developed by Mead et al. (Macromolecules 31:7895–7914, 1998) and Mead (Rheol Acta 46:369–395, 2007) at both the tube coordinate level and the mathematically simplified “toy” level independent of the tube coordinate. The model includes constraint release generated by convection-driven chain retraction (which is equivalent to “convective constraint release” (CCR)), reptation, and tube contour length fluctuations. The properties of the mathematically simplified naïve polydisperse “toy” MLD model are explored in linear and nonlinear steady shear flows where we analytically derive the Cox–Merz rule relating the steady shear viscosity to the modulus of the linear viscoelastic dynamic viscosity. The Cox–Merz rule relating the linear viscoelastic material properties and the nonlinear material properties is shown to be a direct consequence of convective constraint release. The specific feature of CCR that leads to this result is that the relaxation rate due to convective constraint release is proportional to the shear rate, \(\dot{{\gamma }}\), independent of molecular weight. The viability of this well-known empirical relationship is a direct consequence of a coincidence in the mathematical structure of the linear viscoelastic material properties and convective constraint release. There is no physical analogy or relationship between the molecular relaxation mechanisms operative in linear (diffusive relaxation) and nonlinear (convective relaxation) flow regimes. The polydisperse MLD model predictions of the individual molecular weight component contributions to the flow curve, and interpretations thereof, are effectively identical to those first postulated by Bersted (J Appl Polym Sci 19:2167–2177, 1975, J Appl Polym Sci 20:2705–2714, 1976). Following the theoretical developments, a limited experimental study is executed with a commercial polydisperse polystyrene melt. Nearly quantitative agreement between the polydisperse MLD theory and experimental measurements of steady-shear viscosity and dynamic moduli is achieved over a wide range of shear rates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We note the fact that the original Cox–Merz rule was constructed based on the apparent, uncorrected, shear viscosity as determined from capillary rheometry (Dealy and Larson 2006, p. 375ff). In Eq. 6, we use the “true,” corrected shear viscosity in the definition of the Cox–Merz rule. There will be relatively small quantitative distinctions between the apparent and true viscosities at high (nonlinear) shear rates where both Rabinowitch and Bagley corrections to the apparent capillary viscosity are necessary. However, these issues, although important, will not significantly impact the arguments made in this paper.
 
2
We note that stretch in the naïve polydisperse MLD model is significantly suppressed by reptative constraint release of the low molecular weight species (Mishler and Mead 2011). A corrected, representative level of stretch for a given Wiessenberg number, \(\dot{{\gamma }}\tau_{s,i} \), can only be calculated using the modified polydisperse MLD model presented in Mishler and Mead (2011) which properly accounts for solvent-like entanglements in stretch processes and variations of τ si with MWD of polydisperse systems.
 
Literatur
Zurück zum Zitat Abdel-Goad M, Pyckhout-Hintzen W, Kahle S, Allgaier J, Richter D, Fetters LJ (2004) Rheological properties of 1,4-polyisoprene over a large molecular weight range. Macromolecules 37:8135–8144CrossRef Abdel-Goad M, Pyckhout-Hintzen W, Kahle S, Allgaier J, Richter D, Fetters LJ (2004) Rheological properties of 1,4-polyisoprene over a large molecular weight range. Macromolecules 37:8135–8144CrossRef
Zurück zum Zitat Annable T, Buscall R, Ettelaie R, Whittleston D (1993) The rheology of solutions of associating polymers: comparison of experimental behavior with transient network theory. J Rheol 37:695–726CrossRef Annable T, Buscall R, Ettelaie R, Whittleston D (1993) The rheology of solutions of associating polymers: comparison of experimental behavior with transient network theory. J Rheol 37:695–726CrossRef
Zurück zum Zitat Auhl D, Chambon P, McLeish TCB, Read DJ (2009) Elongational flow of blends of long and short polymers: effective stretch relaxation time. Phys Rev Lett 103:136001CrossRef Auhl D, Chambon P, McLeish TCB, Read DJ (2009) Elongational flow of blends of long and short polymers: effective stretch relaxation time. Phys Rev Lett 103:136001CrossRef
Zurück zum Zitat Bercea M, Peiti C, Simonescu B, Navard P (1993) Shear rheology of semi-dilute Poly(methylmethacrylate) solutions. Macromolecules 26:7095–7096CrossRef Bercea M, Peiti C, Simonescu B, Navard P (1993) Shear rheology of semi-dilute Poly(methylmethacrylate) solutions. Macromolecules 26:7095–7096CrossRef
Zurück zum Zitat Bersted BH (1975) An empirical model relating the molecular weight distribution of high density polyethylene to the shear dependence of the steady shear melt viscosity. J Appl Polym Sci 19:2167–2177CrossRef Bersted BH (1975) An empirical model relating the molecular weight distribution of high density polyethylene to the shear dependence of the steady shear melt viscosity. J Appl Polym Sci 19:2167–2177CrossRef
Zurück zum Zitat Bersted BH (1976) A model relating the elastic properties of high-density polyethylene melts to the molecular weight distribution. J Appl Polym Sci 20:2705–2714CrossRef Bersted BH (1976) A model relating the elastic properties of high-density polyethylene melts to the molecular weight distribution. J Appl Polym Sci 20:2705–2714CrossRef
Zurück zum Zitat Bersted BH, Slee JD (1977) A relationship between steady state shear melt viscosity and molecular weight distribution in polystyrene. J Appl Polym Sci 21:2631–2644CrossRef Bersted BH, Slee JD (1977) A relationship between steady state shear melt viscosity and molecular weight distribution in polystyrene. J Appl Polym Sci 21:2631–2644CrossRef
Zurück zum Zitat Bird RB, Armstrong RC, Hassager O (1987) Dynamics of Polymeric Liquids, vol 1, 2nd edn. Wiley, Chichester Bird RB, Armstrong RC, Hassager O (1987) Dynamics of Polymeric Liquids, vol 1, 2nd edn. Wiley, Chichester
Zurück zum Zitat Booij HC (1966) Influence of superimposed steady shear flow on the dynamic properties of non-Newtonian fluids: I Measurements on Non-Newtonian solutions. Rheol Acta 5:215–221CrossRef Booij HC (1966) Influence of superimposed steady shear flow on the dynamic properties of non-Newtonian fluids: I Measurements on Non-Newtonian solutions. Rheol Acta 5:215–221CrossRef
Zurück zum Zitat Booij HC (1968) Influence of superimposed steady shear flow on the dynamic properties of non-Newtonian fluids: III measurements on oscillatory normal stress components. Rheol Acta 7:202–209CrossRef Booij HC (1968) Influence of superimposed steady shear flow on the dynamic properties of non-Newtonian fluids: III measurements on oscillatory normal stress components. Rheol Acta 7:202–209CrossRef
Zurück zum Zitat Booij HC, Leblans P, Palmen J, Tiermersa-Thoone G (1983) Nonlinear viscoelasticity and the Cox–Merz relations for polymeric fluids. J Polym Sci, Polym Phys Ed 21:1703–1711CrossRef Booij HC, Leblans P, Palmen J, Tiermersa-Thoone G (1983) Nonlinear viscoelasticity and the Cox–Merz relations for polymeric fluids. J Polym Sci, Polym Phys Ed 21:1703–1711CrossRef
Zurück zum Zitat Chen HW, Mead DW (2011) Molecular rheology of entangled star and linear polymers II. Nonlinear Viscoelasticity (in press) Chen HW, Mead DW (2011) Molecular rheology of entangled star and linear polymers II. Nonlinear Viscoelasticity (in press)
Zurück zum Zitat Chen HW, Lyon MK, Mead DW, Larson RG, Doi M (2000) Application of binary interaction theory to monodisperse star polymers in nonlinear flows. In: Proc. XIIIth international congress rheology, Cambridge, vol 2, pp 47–49 Chen HW, Lyon MK, Mead DW, Larson RG, Doi M (2000) Application of binary interaction theory to monodisperse star polymers in nonlinear flows. In: Proc. XIIIth international congress rheology, Cambridge, vol 2, pp 47–49
Zurück zum Zitat Cohen A (1991) A Padé approximant to the inverse Langevin function. Rheol Acta 30:270–273CrossRef Cohen A (1991) A Padé approximant to the inverse Langevin function. Rheol Acta 30:270–273CrossRef
Zurück zum Zitat Colby RH, Fetters LJ, Graessley WW (1987) Melt viscosity–melt molecular weight relationship for linear polymers. Macromolecules 20:2226–2237CrossRef Colby RH, Fetters LJ, Graessley WW (1987) Melt viscosity–melt molecular weight relationship for linear polymers. Macromolecules 20:2226–2237CrossRef
Zurück zum Zitat Costello BA (1997) Parallel superposition rheology of polyethylene as a function of temperature. J Non-Newton Fluid Mech 68:303–309CrossRef Costello BA (1997) Parallel superposition rheology of polyethylene as a function of temperature. J Non-Newton Fluid Mech 68:303–309CrossRef
Zurück zum Zitat Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622CrossRef Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622CrossRef
Zurück zum Zitat Currie PK (1980) Calculations of the Doi–Edwards model for concentrated polymer solutions. In: Proceedings of the eighth international congress on rheology, Naples Currie PK (1980) Calculations of the Doi–Edwards model for concentrated polymer solutions. In: Proceedings of the eighth international congress on rheology, Naples
Zurück zum Zitat Currie PK (1982a) Polym Preprints 23:6–7 Currie PK (1982a) Polym Preprints 23:6–7
Zurück zum Zitat Currie PK (1982b) Constitutive equations for polymer melts predicted by the Doi–Edwards and Curtiss-Bird kinetic theory models. J Non-Newton Fluid Mech 11:53–68CrossRef Currie PK (1982b) Constitutive equations for polymer melts predicted by the Doi–Edwards and Curtiss-Bird kinetic theory models. J Non-Newton Fluid Mech 11:53–68CrossRef
Zurück zum Zitat de Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579CrossRef de Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579CrossRef
Zurück zum Zitat de Gennes PG (1976) Dynamics of entangled polymer solutions: the Rouse model. Macromolecules 9:587–593CrossRef de Gennes PG (1976) Dynamics of entangled polymer solutions: the Rouse model. Macromolecules 9:587–593CrossRef
Zurück zum Zitat Dealy JM, Wissbrun KF (1989) Melt rheology and its role in plastics processing: theory and applications. Van Nostrand Reinhold, New York Dealy JM, Wissbrun KF (1989) Melt rheology and its role in plastics processing: theory and applications. Van Nostrand Reinhold, New York
Zurück zum Zitat Dealy JM, Larson RG (2006) Structure and rheology of molten polymers: from structure to flow behavior and back again. Hanser, Cincinnati Dealy JM, Larson RG (2006) Structure and rheology of molten polymers: from structure to flow behavior and back again. Hanser, Cincinnati
Zurück zum Zitat des Cloizeaux J (1988) Double reptation vs. simple reptation in polymer melts. J Europhys Lett 5:437–442CrossRef des Cloizeaux J (1988) Double reptation vs. simple reptation in polymer melts. J Europhys Lett 5:437–442CrossRef
Zurück zum Zitat des Cloizeaux J (1990) Relaxation of entangled polymers in melts. Macromolecules 23:4678–4687CrossRef des Cloizeaux J (1990) Relaxation of entangled polymers in melts. Macromolecules 23:4678–4687CrossRef
Zurück zum Zitat Doi M (1981) An explanation of the 3.4 power law of viscosity of polymeric liquids based on the tube model. J Polym Sci Lett 19:265–273CrossRef Doi M (1981) An explanation of the 3.4 power law of viscosity of polymeric liquids based on the tube model. J Polym Sci Lett 19:265–273CrossRef
Zurück zum Zitat Doi M (1983) Explanation of the 3.4 power law of viscosity of polymeric liquids based on the tube model. J Polym Sci, Phys Ed 21:667—684CrossRef Doi M (1983) Explanation of the 3.4 power law of viscosity of polymeric liquids based on the tube model. J Polym Sci, Phys Ed 21:667—684CrossRef
Zurück zum Zitat Doi M (1987) Basic principle in the viscoelasticity of polymeric liquids. J Non-Newton Fluid Mech 23:151–162CrossRef Doi M (1987) Basic principle in the viscoelasticity of polymeric liquids. J Non-Newton Fluid Mech 23:151–162CrossRef
Zurück zum Zitat Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems: parts I, II and III. J Chem Soc, Faraday Trans. II 74, 1789, 1802, 1818 Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems: parts I, II and III. J Chem Soc, Faraday Trans. II 74, 1789, 1802, 1818
Zurück zum Zitat Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems: part IV. J Chem Soc, Faraday Trans II 75:38 Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems: part IV. J Chem Soc, Faraday Trans II 75:38
Zurück zum Zitat Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford Science, Oxford Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford Science, Oxford
Zurück zum Zitat Doi M, Takimoto J-I (2003) Molecular modeling of entanglements. Phil Trans Royal Soc Lond A 361:641–650CrossRef Doi M, Takimoto J-I (2003) Molecular modeling of entanglements. Phil Trans Royal Soc Lond A 361:641–650CrossRef
Zurück zum Zitat Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox–Merz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35:647–685CrossRef Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox–Merz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35:647–685CrossRef
Zurück zum Zitat Earnest TR, MacKnight WJ (1978) Effect of hydrogen bonding and ionic aggregation on the melt rheology of an ethylene-methacrylic acid copolymer and its sodium salt. J Polym Sci, Polym Phys Ed 16:143–157CrossRef Earnest TR, MacKnight WJ (1978) Effect of hydrogen bonding and ionic aggregation on the melt rheology of an ethylene-methacrylic acid copolymer and its sodium salt. J Polym Sci, Polym Phys Ed 16:143–157CrossRef
Zurück zum Zitat Ferri D, Lomellini P (1999) Melt rheology of randomly branched polystyrenes. J Rheol 43:1355–1372CrossRef Ferri D, Lomellini P (1999) Melt rheology of randomly branched polystyrenes. J Rheol 43:1355–1372CrossRef
Zurück zum Zitat Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647CrossRef Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647CrossRef
Zurück zum Zitat Garcia-Franco CA, Lohse DJ, Mendelson RA, Fetters LJ, Milner ST, Hadjichristidis N, Mead DW (2002) Processing Olefin co-polymers. Composition of Matter Patent, US Patent Number 6,417,281 Garcia-Franco CA, Lohse DJ, Mendelson RA, Fetters LJ, Milner ST, Hadjichristidis N, Mead DW (2002) Processing Olefin co-polymers. Composition of Matter Patent, US Patent Number 6,417,281
Zurück zum Zitat Gleissle W (1980) Two simple time-shear rate relations combining viscosity and first normal stress coefficient in the linear and non-linear flow range. In: Astarita G, Marrucci G, Nicolais L (eds) Rheology, vol 2. Plenum, New York, pp 457–462 Gleissle W (1980) Two simple time-shear rate relations combining viscosity and first normal stress coefficient in the linear and non-linear flow range. In: Astarita G, Marrucci G, Nicolais L (eds) Rheology, vol 2. Plenum, New York, pp 457–462
Zurück zum Zitat Graessley WW (1984) Chapter 3. In: Mark JE, Eisenberg A, Graessley WW, Mandelkern L, Koenig JL (eds) Physical properties of polymers. American Chemical Society, Washington, DC, pp 97–153 Graessley WW (1984) Chapter 3. In: Mark JE, Eisenberg A, Graessley WW, Mandelkern L, Koenig JL (eds) Physical properties of polymers. American Chemical Society, Washington, DC, pp 97–153
Zurück zum Zitat Green MS, Tobolsky AV (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14:80–92CrossRef Green MS, Tobolsky AV (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14:80–92CrossRef
Zurück zum Zitat Ianniruberto G, Marrucci G (1996) On compatibility of the Cox–Merz rule with the model of Doi and Edwards. J Non-Newton Fluid Mech 65:241–246CrossRef Ianniruberto G, Marrucci G (1996) On compatibility of the Cox–Merz rule with the model of Doi and Edwards. J Non-Newton Fluid Mech 65:241–246CrossRef
Zurück zum Zitat Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen W, Richter D, Cho D, Chang T, Rubinstein M (2008) Unexpected power-law stress relaxation of entangled ring polymers. Nature Materials 7:997–1002CrossRef Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen W, Richter D, Cho D, Chang T, Rubinstein M (2008) Unexpected power-law stress relaxation of entangled ring polymers. Nature Materials 7:997–1002CrossRef
Zurück zum Zitat Klein J (1978) Evidence of reptation in an entangled polymer melt. Nature (Lond) 271:143–145CrossRef Klein J (1978) Evidence of reptation in an entangled polymer melt. Nature (Lond) 271:143–145CrossRef
Zurück zum Zitat Klein J, Briscoe C (1979) The diffusion of long chain molecules through bulk polyethylenes. Proc Royal Soc Lond A 365:53CrossRef Klein J, Briscoe C (1979) The diffusion of long chain molecules through bulk polyethylenes. Proc Royal Soc Lond A 365:53CrossRef
Zurück zum Zitat Kulicke WM, Kniewske R (1984) The shear viscosity dependence on concentration, molecular weight, and shear rate of polystyrene solutions. Rheol Acta 23:75–83CrossRef Kulicke WM, Kniewske R (1984) The shear viscosity dependence on concentration, molecular weight, and shear rate of polystyrene solutions. Rheol Acta 23:75–83CrossRef
Zurück zum Zitat Kulicke WM, Porter RS (1980) Relation between steady shear flow and dynamic rheology. Rheol Acta 19:601–605CrossRef Kulicke WM, Porter RS (1980) Relation between steady shear flow and dynamic rheology. Rheol Acta 19:601–605CrossRef
Zurück zum Zitat Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworths, London Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworths, London
Zurück zum Zitat Larson RG (1999) Structure and rheology of complex fluids. Oxford University Press, Oxford Larson RG (1999) Structure and rheology of complex fluids. Oxford University Press, Oxford
Zurück zum Zitat Larson RG, Mead DW (1990) Rheo-optical study of stiff polymers. Macromolecules 23:2524–2533CrossRef Larson RG, Mead DW (1990) Rheo-optical study of stiff polymers. Macromolecules 23:2524–2533CrossRef
Zurück zum Zitat Laun HM (1986) Predictions of elastic strains in polymer melts in shear and elongation. J Rheol 30:459–501CrossRef Laun HM (1986) Predictions of elastic strains in polymer melts in shear and elongation. J Rheol 30:459–501CrossRef
Zurück zum Zitat Leblans PJR, Sampers J, Booij HC (1985) The mirror relations and nonlinear viscoelasticity of polymer melts. Rheol Acta 24:152–158CrossRef Leblans PJR, Sampers J, Booij HC (1985) The mirror relations and nonlinear viscoelasticity of polymer melts. Rheol Acta 24:152–158CrossRef
Zurück zum Zitat Lodge AS (1956) A network theory of flow birefringence and stress in concentrated solutions. Trans Faraday Soc 52:120–130CrossRef Lodge AS (1956) A network theory of flow birefringence and stress in concentrated solutions. Trans Faraday Soc 52:120–130CrossRef
Zurück zum Zitat Lodge AS (1964) Elastic liquids: an introductory vector treatment of finite strain polymer rheology. Academic, New York Lodge AS (1964) Elastic liquids: an introductory vector treatment of finite strain polymer rheology. Academic, New York
Zurück zum Zitat Lodge AS (1968) Constitutive equations from molecular network theories for polymer solutions. Rheol Acta 7:379–392CrossRef Lodge AS (1968) Constitutive equations from molecular network theories for polymer solutions. Rheol Acta 7:379–392CrossRef
Zurück zum Zitat Malkin AY (1990) Some inverse problems in rheology leading to integral equations. Rheol Acta 29:512–518CrossRef Malkin AY (1990) Some inverse problems in rheology leading to integral equations. Rheol Acta 29:512–518CrossRef
Zurück zum Zitat Malkin AY, Teishev AE (1991) Flow curve—molecular weight distribution: is the solution of the inverse problem possible? Polym Eng Sci 31:1590–1596CrossRef Malkin AY, Teishev AE (1991) Flow curve—molecular weight distribution: is the solution of the inverse problem possible? Polym Eng Sci 31:1590–1596CrossRef
Zurück zum Zitat Marrucci G (1996) Dynamics of entanglements: a nonlinear model consistent with the Cox–Merz rule. J Non-Newton Fluid Mech 62:279CrossRef Marrucci G (1996) Dynamics of entanglements: a nonlinear model consistent with the Cox–Merz rule. J Non-Newton Fluid Mech 62:279CrossRef
Zurück zum Zitat Marrucci G, Ianniruberto G (1997) Effect of flow on topological interactions in polymers. Macromol Symp 117:233CrossRef Marrucci G, Ianniruberto G (1997) Effect of flow on topological interactions in polymers. Macromol Symp 117:233CrossRef
Zurück zum Zitat Marrucci G, Grizzuti N (1988a) Fast flows of concentrated polymers: predictions of the tube model on chain stretching. Gazz Chim Ital 118:179 Marrucci G, Grizzuti N (1988a) Fast flows of concentrated polymers: predictions of the tube model on chain stretching. Gazz Chim Ital 118:179
Zurück zum Zitat Marrucci G, Grizzuti N (1988b) Topics in molecular modeling of entangled polymer rheology. In: Proceedings Xth international congress rheology, Sydney Marrucci G, Grizzuti N (1988b) Topics in molecular modeling of entangled polymer rheology. In: Proceedings Xth international congress rheology, Sydney
Zurück zum Zitat Marrucci G, Ianniruberto G (1999) Open problems for tube models for concentrated polymers. J Non-Newton Fluid Mech 82:275–286CrossRef Marrucci G, Ianniruberto G (1999) Open problems for tube models for concentrated polymers. J Non-Newton Fluid Mech 82:275–286CrossRef
Zurück zum Zitat Matsumoto T, Hitomi C, Onogi S (1975) Rheological properties of disperse systems of spherical particles in polystyrene solution at long time scales. Trans Soc Rheol 19:541CrossRef Matsumoto T, Hitomi C, Onogi S (1975) Rheological properties of disperse systems of spherical particles in polystyrene solution at long time scales. Trans Soc Rheol 19:541CrossRef
Zurück zum Zitat Mead DW (1994) Experimental determination of molecular weight distributions from linear viscoelastic material functions for linear flexible polymers. J Rheol 38:1797–1827CrossRef Mead DW (1994) Experimental determination of molecular weight distributions from linear viscoelastic material functions for linear flexible polymers. J Rheol 38:1797–1827CrossRef
Zurück zum Zitat Mead DW (1995a) The reptation model with chain stretching. I) Basic equations and general properties. Rheol Acta 34:339–360CrossRef Mead DW (1995a) The reptation model with chain stretching. I) Basic equations and general properties. Rheol Acta 34:339–360CrossRef
Zurück zum Zitat Mead DW (1995b) The reptation model with chain stretching. II) Steady flow properties. Rheol Acta 34:360–383CrossRef Mead DW (1995b) The reptation model with chain stretching. II) Steady flow properties. Rheol Acta 34:360–383CrossRef
Zurück zum Zitat Mead DW (1996) Component predictions and the relaxation spectrum of the double reptation mixing rule for polydisperse linear polymers. J Rheol 40, 633–661CrossRef Mead DW (1996) Component predictions and the relaxation spectrum of the double reptation mixing rule for polydisperse linear polymers. J Rheol 40, 633–661CrossRef
Zurück zum Zitat Mead DW (2007) Development of the “Binary interaction” theory for entangled polydisperse linear polymers. Rheol Acta 46:369–395CrossRef Mead DW (2007) Development of the “Binary interaction” theory for entangled polydisperse linear polymers. Rheol Acta 46:369–395CrossRef
Zurück zum Zitat Mead DW (2011b) Small amplitude oscillatory shear flow superposed on parallel or perpendicular steady shear of polydisperse linear polymers: the MLD model. Rheol Acta (in press) Mead DW (2011b) Small amplitude oscillatory shear flow superposed on parallel or perpendicular steady shear of polydisperse linear polymers: the MLD model. Rheol Acta (in press)
Zurück zum Zitat Mead DW, Larson RG (1990) Rheo-optical study of isotropic solutions of stiff polymers. Macromolecules 23:2524–2533CrossRef Mead DW, Larson RG (1990) Rheo-optical study of isotropic solutions of stiff polymers. Macromolecules 23:2524–2533CrossRef
Zurück zum Zitat Mead DW, Herbolzheimer EA (1992) The effect of segmental stretch on theoretical predictions of the Doi–Edwards model. In: Proceedings of the XIth international congress of rheology, Brussels 100 Mead DW, Herbolzheimer EA (1992) The effect of segmental stretch on theoretical predictions of the Doi–Edwards model. In: Proceedings of the XIth international congress of rheology, Brussels 100
Zurück zum Zitat Mead DW, Larson RG, Doi M (1998) A molecular theory for fast flows of entangled polymers. Macromolecules 31:7895–7914CrossRef Mead DW, Larson RG, Doi M (1998) A molecular theory for fast flows of entangled polymers. Macromolecules 31:7895–7914CrossRef
Zurück zum Zitat Menezes EV, Graessley WW (1982) Nonlinear rheological behavior of polymer systems for several shear flow histories. J Polym Sci, Polym Phys Ed 20:1817–1833CrossRef Menezes EV, Graessley WW (1982) Nonlinear rheological behavior of polymer systems for several shear flow histories. J Polym Sci, Polym Phys Ed 20:1817–1833CrossRef
Zurück zum Zitat Milner ST (1996) Relating the shear-thinning curve to the molecular weight distribution in linear polymer melts. J Rheol 40:303–315CrossRef Milner ST (1996) Relating the shear-thinning curve to the molecular weight distribution in linear polymer melts. J Rheol 40:303–315CrossRef
Zurück zum Zitat Mishler SD (2001) A quantitative molecular model for the nonlinear rheology of polydisperse linear polymer melts. Ph.D. Thesis, University of Michigan Mishler SD (2001) A quantitative molecular model for the nonlinear rheology of polydisperse linear polymer melts. Ph.D. Thesis, University of Michigan
Zurück zum Zitat Mishler SD, Mead DW (2011) Application of the MLD “Toy” model to extensional flows of broadly polydisperse linear polymers. Rheol Acta (in press) Mishler SD, Mead DW (2011) Application of the MLD “Toy” model to extensional flows of broadly polydisperse linear polymers. Rheol Acta (in press)
Zurück zum Zitat Mishler SD, Dreze H, Lyon MK, Mead DW, Larson RG, Doi M (2000) Application of binary interaction theory to general extensional flows: polydisperse polymers. In: Proc. XIII th international congress of rheology, Cambridge, vol 1, pp 154–156 Mishler SD, Dreze H, Lyon MK, Mead DW, Larson RG, Doi M (2000) Application of binary interaction theory to general extensional flows: polydisperse polymers. In: Proc. XIII th international congress of rheology, Cambridge, vol 1, pp 154–156
Zurück zum Zitat Onogi S, Kato H, Ueki S, Ibaragi T (1966) Rheological properties of polystyrene melts. J Polym Sci, C, Polym Symp 15:481–494CrossRef Onogi S, Kato H, Ueki S, Ibaragi T (1966) Rheological properties of polystyrene melts. J Polym Sci, C, Polym Symp 15:481–494CrossRef
Zurück zum Zitat Onogi S, Masuda T, Ibaragi T (1968) Rheological properties of polymethyl methacrylate and polyvinyl acetate in the molten state. Kolloid-Z 222:110CrossRef Onogi S, Masuda T, Ibaragi T (1968) Rheological properties of polymethyl methacrylate and polyvinyl acetate in the molten state. Kolloid-Z 222:110CrossRef
Zurück zum Zitat Pearson DS (1987) Recent advances in the molecular aspects of polymer viscoelasticity. Rubber Chem Technol 60:439–496CrossRef Pearson DS (1987) Recent advances in the molecular aspects of polymer viscoelasticity. Rubber Chem Technol 60:439–496CrossRef
Zurück zum Zitat Pearson DS, Herbolzheimer EA, Marrucci G, Grizzuti N (1991) Transient behavior of entangled polymers at high shear rates. J Polym Sci, Phys Ed 29:1589–1597CrossRef Pearson DS, Herbolzheimer EA, Marrucci G, Grizzuti N (1991) Transient behavior of entangled polymers at high shear rates. J Polym Sci, Phys Ed 29:1589–1597CrossRef
Zurück zum Zitat Sakamoto K, MacKnight WJ, Porter RS (1970) Dynamic and steady-shear melt rheology of and ethylene-methacrylic acid copolymer and its salts. J Polym Sci, A-2 Polym Phys 8:277–287CrossRef Sakamoto K, MacKnight WJ, Porter RS (1970) Dynamic and steady-shear melt rheology of and ethylene-methacrylic acid copolymer and its salts. J Polym Sci, A-2 Polym Phys 8:277–287CrossRef
Zurück zum Zitat Shaw MY, Tuminello WH (1994) A closer look at the MWD-Viscosity transform. Polym Eng Sci 34:159CrossRef Shaw MY, Tuminello WH (1994) A closer look at the MWD-Viscosity transform. Polym Eng Sci 34:159CrossRef
Zurück zum Zitat Simmons JM (1968) Dynamic modulus of polyisobutylene solutions in superposed steady shear. Rheol Acta 7:184–188CrossRef Simmons JM (1968) Dynamic modulus of polyisobutylene solutions in superposed steady shear. Rheol Acta 7:184–188CrossRef
Zurück zum Zitat Somma E, Valentino O, Titomanlio G, Ianniruberto G (2007) Parallel superposition in entangled polydisperse polymer melts: experiment and theory. J Rheol 51:987–1005CrossRef Somma E, Valentino O, Titomanlio G, Ianniruberto G (2007) Parallel superposition in entangled polydisperse polymer melts: experiment and theory. J Rheol 51:987–1005CrossRef
Zurück zum Zitat Thayer AM (1995) Metallocene catalysts initiate new era in polymer systems. C&E News 73:15 Thayer AM (1995) Metallocene catalysts initiate new era in polymer systems. C&E News 73:15
Zurück zum Zitat Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Oxford University Press, Oxford Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Oxford University Press, Oxford
Zurück zum Zitat Tsenoglou C (1987) Viscoelasticity of binary homopolymer blends. ACS Polym Preprints 28:185–186 Tsenoglou C (1987) Viscoelasticity of binary homopolymer blends. ACS Polym Preprints 28:185–186
Zurück zum Zitat Tsenoglou C (1991) Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers. Macromolecules 24:1762–1767CrossRef Tsenoglou C (1991) Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers. Macromolecules 24:1762–1767CrossRef
Zurück zum Zitat Tuminello WH (1986) Molecular weight and molecular weight distribution from dynamic measurements of polymer melts. Polym Eng Sci 26:1339–1347CrossRef Tuminello WH (1986) Molecular weight and molecular weight distribution from dynamic measurements of polymer melts. Polym Eng Sci 26:1339–1347CrossRef
Zurück zum Zitat Tuminello WH (1989) Molecular weight distributions of tetra-fluoroethylene hexa-fluoropropylene copolymers. Polym Eng Sci 29:645–653CrossRef Tuminello WH (1989) Molecular weight distributions of tetra-fluoroethylene hexa-fluoropropylene copolymers. Polym Eng Sci 29:645–653CrossRef
Zurück zum Zitat Tuminello WH, Cudré-Maroux N (1991) Determining molecular weight distributions from viscosity versus shear rate curves. Polym Eng Sci 31:1496–1507CrossRef Tuminello WH, Cudré-Maroux N (1991) Determining molecular weight distributions from viscosity versus shear rate curves. Polym Eng Sci 31:1496–1507CrossRef
Zurück zum Zitat Tuminello WH, Treat T, English AD (1988) Poly(tetrafluoroethylene): molecular weight distribution and chain stiffness. Macromolecules 21:2606–2610CrossRef Tuminello WH, Treat T, English AD (1988) Poly(tetrafluoroethylene): molecular weight distribution and chain stiffness. Macromolecules 21:2606–2610CrossRef
Zurück zum Zitat Uppuluri S, Keinath SE, Tomalia DA, Dvornic PR (1998) Rheology of dendrimers: I Newtonian flow behavior of medium and highly concentrated solutions of polyamidoamine (PAMAM) dendrimers in ethylenediamine (EDA) solvent. Macromolecules 31:4498–4510CrossRef Uppuluri S, Keinath SE, Tomalia DA, Dvornic PR (1998) Rheology of dendrimers: I Newtonian flow behavior of medium and highly concentrated solutions of polyamidoamine (PAMAM) dendrimers in ethylenediamine (EDA) solvent. Macromolecules 31:4498–4510CrossRef
Zurück zum Zitat Utracki LA, Gendron R (1984) Pressure oscillation during extrusion of polyethylenes. J Rheol 28:601–623CrossRef Utracki LA, Gendron R (1984) Pressure oscillation during extrusion of polyethylenes. J Rheol 28:601–623CrossRef
Zurück zum Zitat Venkatraman S, Okano M (1990) A comparison of torsional and capillary rheometry for polymer melts: the Cox–Merz rule revisited. Polym Eng Sci 30:308–313CrossRef Venkatraman S, Okano M (1990) A comparison of torsional and capillary rheometry for polymer melts: the Cox–Merz rule revisited. Polym Eng Sci 30:308–313CrossRef
Zurück zum Zitat Wang J, Knox JR, Porter RS (1978) Steady-state and dynamic rheology of poly(1-olefin) melts. J Polym Sci, Polym Phys Ed 16:1709–1719CrossRef Wang J, Knox JR, Porter RS (1978) Steady-state and dynamic rheology of poly(1-olefin) melts. J Polym Sci, Polym Phys Ed 16:1709–1719CrossRef
Zurück zum Zitat Winter HH (2009) Three views of viscoelasticity for Cox–Merz materials. Rheol Acta 48:241–243CrossRef Winter HH (2009) Three views of viscoelasticity for Cox–Merz materials. Rheol Acta 48:241–243CrossRef
Zurück zum Zitat Wissbrun KF (1986) Numerical comparison of empirical rules for prediction of nonlinear rheology from linear viscoelasticity. J Rheol 30:1143–1164CrossRef Wissbrun KF (1986) Numerical comparison of empirical rules for prediction of nonlinear rheology from linear viscoelasticity. J Rheol 30:1143–1164CrossRef
Zurück zum Zitat Wood-Adams PM, Dealy JM (1996) Use of rheological measurements to estimate molecular weight distribution of linear polyethylene. J Rheol 40:761–778CrossRef Wood-Adams PM, Dealy JM (1996) Use of rheological measurements to estimate molecular weight distribution of linear polyethylene. J Rheol 40:761–778CrossRef
Zurück zum Zitat Yamamoto J (1956) The viscoelastic properties of network structure I. General formalism. Phys Soc Japan 11:413–421CrossRef Yamamoto J (1956) The viscoelastic properties of network structure I. General formalism. Phys Soc Japan 11:413–421CrossRef
Zurück zum Zitat Yamamoto J (1957) The viscoelastic properties of network structure II. Structural viscosity. Phys Soc Japan 12:1148–1158CrossRef Yamamoto J (1957) The viscoelastic properties of network structure II. Structural viscosity. Phys Soc Japan 12:1148–1158CrossRef
Zurück zum Zitat Yamamoto J (1958) The viscoelastic properties of network structure III. Normal stress effect. Phys Soc Japan 13:1200–1211CrossRef Yamamoto J (1958) The viscoelastic properties of network structure III. Normal stress effect. Phys Soc Japan 13:1200–1211CrossRef
Zurück zum Zitat Yasuda K, Armstrong RC, Cohen RE (1981) Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol Acta 20:163–178CrossRef Yasuda K, Armstrong RC, Cohen RE (1981) Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol Acta 20:163–178CrossRef
Metadaten
Titel
Analytic derivation of the Cox–Merz rule using the MLD “toy” model for polydisperse linear polymers
verfasst von
David W. Mead
Publikationsdatum
01.10.2011
Verlag
Springer-Verlag
Erschienen in
Rheologica Acta / Ausgabe 9-10/2011
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-011-0550-5

Weitere Artikel der Ausgabe 9-10/2011

Rheologica Acta 9-10/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.