Skip to main content
Erschienen in: Rheologica Acta 10-11/2014

01.11.2014 | Original Contribution

Scaling relations for elongational flow of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene

verfasst von: Manfred H Wagner

Erschienen in: Rheologica Acta | Ausgabe 10-11/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A consistent model of the rheology of polymer melts and concentrated solutions is presented, based on the idea that the pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic (Doi and Edwards. The Theory of Polymer Dynamics, Oxford University Press, 1986). In a tube model with variable tube diameter, chain stretch and tube diameter reduction are related, and at deformation rates larger than the inverse Rouse time τ R, the chain is stretched and its confining tube becomes increasingly anisotropic. Tube diameter reduction leads to an interchain pressure in the lateral direction of the tube (Marrucci and Ianniruberto. Macromolecules 37:3934-3942, 2004). Chain stretch is balanced by interchain tube pressure in the lateral direction, which is proportional to the third power of stretch, and by a spring force in the longitudinal direction of the tube, which is linear in stretch. Analyzing elongational viscosity data of Huang et al. (Macromolecules 46:5026-5035, 2013a; ACS Macro Letters 2:741-744, 2013b) shows that dilution of polystyrene by oligomeric styrene does not change the relative interchain tube pressure. Based on this extended interchain pressure concept, scaling relations for linear viscoelasticity and elongational viscosity of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene are presented based exclusively on the relaxation modulus of a reference polymer melt, the volume fraction of polymer in the solution, and the time-molar-mass shift as well as the time-temperature shift caused by the reduction of the glass transition temperature T g of the polymer in a solution relative to T g of the melt.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bach A, Almdal K, Rasmussen HK, Hassager O (2003) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179CrossRef Bach A, Almdal K, Rasmussen HK, Hassager O (2003) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179CrossRef
Zurück zum Zitat Baumgaertel M, Schausberger A, Winter HH (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29:400–408CrossRef Baumgaertel M, Schausberger A, Winter HH (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29:400–408CrossRef
Zurück zum Zitat Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford
Zurück zum Zitat Fox TG, Flory PJ (1950) Second order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys 21:581–591CrossRef Fox TG, Flory PJ (1950) Second order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys 21:581–591CrossRef
Zurück zum Zitat Hassager O (2004) Polymer fluid mechanics: Molecular orientation and stretching, Proc. XIVth Int. Congress on Rheology, NF01 Hassager O (2004) Polymer fluid mechanics: Molecular orientation and stretching, Proc. XIVth Int. Congress on Rheology, NF01
Zurück zum Zitat Huang Q, Mednova O, Rasmussen HK, Alvarez, Skov AL, Almdal K, Hassager O (2013a) Concentrated Polymer Solutions are Different from Melts: Role of Entanglement Molecular Weight. Macromolecules 46:5026–5035CrossRef Huang Q, Mednova O, Rasmussen HK, Alvarez, Skov AL, Almdal K, Hassager O (2013a) Concentrated Polymer Solutions are Different from Melts: Role of Entanglement Molecular Weight. Macromolecules 46:5026–5035CrossRef
Zurück zum Zitat Huang Q, Alvarez NJ, Matsumiya Y, Rasmussen HK, Watanabe H, Hassager O (2013b) Extensional rheology of entangled polystyrene solutions suggests importance of nematic interactions. ACS Macro Lett 2:741–744CrossRef Huang Q, Alvarez NJ, Matsumiya Y, Rasmussen HK, Watanabe H, Hassager O (2013b) Extensional rheology of entangled polystyrene solutions suggests importance of nematic interactions. ACS Macro Lett 2:741–744CrossRef
Zurück zum Zitat Isaki T, Takahashi M, Urakawa O (2003) Biaxial damping function of entangled monodisperse polystyrene melts: Comparison with the Mead-Larson-Doi model. J Rheol 47:1201–1210CrossRef Isaki T, Takahashi M, Urakawa O (2003) Biaxial damping function of entangled monodisperse polystyrene melts: Comparison with the Mead-Larson-Doi model. J Rheol 47:1201–1210CrossRef
Zurück zum Zitat Luap C, Muller C, Schweizer T, Venerus DC (2005) Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution. Rheol Acta 45:83–91CrossRef Luap C, Muller C, Schweizer T, Venerus DC (2005) Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution. Rheol Acta 45:83–91CrossRef
Zurück zum Zitat Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York
Zurück zum Zitat Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942CrossRef Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942CrossRef
Zurück zum Zitat Marrucci G, Ianniruberto G (2005) Modelling nonlinear polymer rheology is still challenging. Korea-Australia Rheol J 17(3):111–116 Marrucci G, Ianniruberto G (2005) Modelling nonlinear polymer rheology is still challenging. Korea-Australia Rheol J 17(3):111–116
Zurück zum Zitat Menezes EV, Graessley WW (1982) Nonlinear rheological behavior of polymer systems for several shear-flow histories. Polym Phys 20:1817–1833CrossRef Menezes EV, Graessley WW (1982) Nonlinear rheological behavior of polymer systems for several shear-flow histories. Polym Phys 20:1817–1833CrossRef
Zurück zum Zitat Nielsen JK, Rasmussen HK, Hassager O, McKinley GH (2006) Elongational viscosity of monodisperse and bidisperse polystyrene melts. J Rheol 50:453–476CrossRef Nielsen JK, Rasmussen HK, Hassager O, McKinley GH (2006) Elongational viscosity of monodisperse and bidisperse polystyrene melts. J Rheol 50:453–476CrossRef
Zurück zum Zitat Nielsen JK, Rasmussen HK, Hassager O (2008) Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension. J Rheol 52:885–899CrossRef Nielsen JK, Rasmussen HK, Hassager O (2008) Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension. J Rheol 52:885–899CrossRef
Zurück zum Zitat Nielsen JK, Rasmussen HK (2008) Reversed extension flow. J Non-Newtonian Fluid Mech 155:15–19CrossRef Nielsen JK, Rasmussen HK (2008) Reversed extension flow. J Non-Newtonian Fluid Mech 155:15–19CrossRef
Zurück zum Zitat Osaki K, Nishizawa K, Kurata M (1982) Material time constant characterizing the nonlinear viscoelasticity of entangled polymeric systems. Macromolecules 15:1068–1071CrossRef Osaki K, Nishizawa K, Kurata M (1982) Material time constant characterizing the nonlinear viscoelasticity of entangled polymeric systems. Macromolecules 15:1068–1071CrossRef
Zurück zum Zitat Rasmussen HK, Laille P, Yu K (2008) Large amplitude oscillatory elongational flow. Rheol Acta 47:97–103CrossRef Rasmussen HK, Laille P, Yu K (2008) Large amplitude oscillatory elongational flow. Rheol Acta 47:97–103CrossRef
Zurück zum Zitat Rasmussen HK, Huang Q (2014) The missing link between the extensional dynamics of polymer melts and solutions. J Non-Newtonian Fluid Mech 204:1–6CrossRef Rasmussen HK, Huang Q (2014) The missing link between the extensional dynamics of polymer melts and solutions. J Non-Newtonian Fluid Mech 204:1–6CrossRef
Zurück zum Zitat Rasmussen HK, Huang Q (2014) Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts. Rheol Acta 53:199–208CrossRef Rasmussen HK, Huang Q (2014) Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts. Rheol Acta 53:199–208CrossRef
Zurück zum Zitat Rolon-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50:327–340CrossRef Rolon-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50:327–340CrossRef
Zurück zum Zitat Takahashi M, Isaki T, Takigawa T, Masuda T (1993) Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates. J Rheol 37:827–846CrossRef Takahashi M, Isaki T, Takigawa T, Masuda T (1993) Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates. J Rheol 37:827–846CrossRef
Zurück zum Zitat Wagner MH, Schaeffer J (1992) Nonlinear strain measures for general biaxial extension of polymer melts. J Rheol 36:1–26CrossRef Wagner MH, Schaeffer J (1992) Nonlinear strain measures for general biaxial extension of polymer melts. J Rheol 36:1–26CrossRef
Zurück zum Zitat Wagner MH, Schaeffer J (1993) Rubbers and Polymer melts: Universal aspects of non-linear stress-strain relations. J Rheol 37:28CrossRef Wagner MH, Schaeffer J (1993) Rubbers and Polymer melts: Universal aspects of non-linear stress-strain relations. J Rheol 37:28CrossRef
Zurück zum Zitat Wagner MH, Schaeffer J (1994) Assessment of non-linear strain measures for extensional and shearing flows of polymer melts. Rheol Acta 33:506–516CrossRef Wagner MH, Schaeffer J (1994) Assessment of non-linear strain measures for extensional and shearing flows of polymer melts. Rheol Acta 33:506–516CrossRef
Zurück zum Zitat Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse and polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412CrossRef Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse and polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412CrossRef
Zurück zum Zitat Wagner MH, Kheirandish S, Hassager O (2005) Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. J Rheol 49:1317–1327CrossRef Wagner MH, Kheirandish S, Hassager O (2005) Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. J Rheol 49:1317–1327CrossRef
Zurück zum Zitat Wagner MH, Rolon-Garrido VH, Nielsen JK, Rasmussen HK, Hassager O (2008) A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends. J Rheol 52:67–86CrossRef Wagner MH, Rolon-Garrido VH, Nielsen JK, Rasmussen HK, Hassager O (2008) A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends. J Rheol 52:67–86CrossRef
Zurück zum Zitat Wagner MH, Rolon-Garrido VH (2009a) Recent advances in constitutive modeling of polymer melts. In: M. Zatloukal (ed) Novel Trends in Rheology III AIP Conference Proceedings 1152. American Institute of Physics, pp 16–31 Wagner MH, Rolon-Garrido VH (2009a) Recent advances in constitutive modeling of polymer melts. In: M. Zatloukal (ed) Novel Trends in Rheology III AIP Conference Proceedings 1152. American Institute of Physics, pp 16–31
Zurück zum Zitat Wagner MH, Rolon-Garrido VH (2009b) Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time. Korea-Australia Rheol J 21:203–211 Wagner MH, Rolon-Garrido VH (2009b) Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time. Korea-Australia Rheol J 21:203–211
Zurück zum Zitat Wagner MH, Rolon-Garrido VH (2010) The interchain pressure effect in shear rheology. Rheol Acta 49:459471CrossRef Wagner MH, Rolon-Garrido VH (2010) The interchain pressure effect in shear rheology. Rheol Acta 49:459471CrossRef
Metadaten
Titel
Scaling relations for elongational flow of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene
verfasst von
Manfred H Wagner
Publikationsdatum
01.11.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Rheologica Acta / Ausgabe 10-11/2014
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-014-0791-1

Weitere Artikel der Ausgabe 10-11/2014

Rheologica Acta 10-11/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.