Skip to main content
Log in

Flow instabilities in large amplitude oscillatory shear: a cautionary tale

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In recent years, large amplitude oscillatory shear (LAOS) has become a prime tool to investigate the nonlinear rheology of complex fluids. More specifically, most studies use LAOS data as a macroscopic probe for hypothetical microscopic changes, sometimes successfully. Nevertheless, we would like to raise awareness on the potential impact of secondary flows triggered by instabilities in LAOS performed in curved shear flows exemplified by the Taylor–Couette geometry. First, we show that even for Newtonian fluids, where no micro-structural changes are expected, complex flow patterns can emerge in the LAOS data. Second, we stress the potential impact of similar effects in complex fluids by studying LAOS flows of a well-known shear-banding surfactant solution. Our hope is that our thorough study of the Newtonian case together with preliminary experiments on a complex fluid will reinforce the already successful analogy existing between inertial and elastic instabilities, suggest caution for future LAOS studies focused solely on a structural perspective, and open new research avenues combining flow instabilities and unsteady flows in complex fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adler F, Sawyer W, Ferry JD (1949) Propagation of transverse waves in viscoelastic media. J Appl Phys 20(11):1036–1041

    Article  Google Scholar 

  • Akhavan R, Kamm R, Shapiro A (1991) An investigation of transition to turbulence in bounded oscillatory stokes flows part 1. experiments. J Fluid Mech 225:395–422

    Article  Google Scholar 

  • Aouidef A, Normand C, Stegner A, Wesfreid J (1994) Centrifugal instability of pulsed flow. Phys Fluids 6(11):3665–3676

    Article  Google Scholar 

  • Bird R, Armstrong R, Hassager O (1987) Dynamics of polymeric liquids. Vol. 1: Fluid mechanics. Wiley, New York

    Google Scholar 

  • Bird R, Armstrong R, Curtiss C (1987) Dynamics of polymeric liquids Kinetic theory, vol 2. Wiley, New York

  • Casanellas L, Ortín J (2012) Experiments on the laminar oscillatory flow of wormlike micellar solutions. Rheol Acta 51(6):545–557

    Article  Google Scholar 

  • Casanellas L, Ortín J (2014) Vortex ring formation in oscillatory pipe flow of wormlike micellar solutions. J Rheol 58:149

    Article  Google Scholar 

  • Casanellas L et al (2011) Laminar oscillatory flow of maxwell and oldroyd-b fluids: Theoretical analysis. J Non-Newtonian Fluid Mech 166(23):1315–1326

    Article  Google Scholar 

  • Couette M (1888) Comptes Rendus 107:388–390

  • Crandall IB (1926) Theory of vibrating systems and sound. D Van Nostrand Company Princeton

  • Dealy J (2010) Weissenberg and deborah numbers—their definition and use. Rheol Bulletin 79:2

    Google Scholar 

  • Didden N (1979) On the formation of vortex rings: Rolling-up and production of circulation. ZAMP 30(1):101–116

    Article  Google Scholar 

  • Dimitriou CJ, Ewoldt RH, McKinley GH (2012a) Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (laostress). J Rheol 57(1):27–70

  • Dimitriou CJ, Casanellas L, Ober TJ, McKinley GH (2012b) Rheo-piv of a shear-banding wormlike micellar solution under large amplitude oscillatory shear. Rheol acta 51(5):395–411

  • Donnelly R (1964) Experiments on the stability of viscous flow between rotating cylinder. iii. enhancement of stability by modulation. Proceedings of the Royal Society of London. Ser A Math Phys Sci 281(1384):130–139

    Article  Google Scholar 

  • Donnelly R, Fultz D (1960) Experiments on the stability of viscous flow between rotating cylinders. ii. visual observations. Proceedings of the Royal Society of London. Ser A MMath Phys Sci 258(1292):101–123

    Article  Google Scholar 

  • Donnelly RJ (1958) Experiments on the stability of viscous flow between rotating cylinders. i. torque measurements. Proceedings of the Royal Society of London. Ser A A MMath Phys Sci 246:312–325

    Article  Google Scholar 

  • Eckmann DM, Grotberg JB (1991) Experiments on transition to turbulence in oscillatory pipe flow. J Fluid Mech 222:329–350

    Article  Google Scholar 

  • Ewoldt RH, Clasen C, Hosoi A, McKinley GH (2007) Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion. Soft Matter 3(5):634–643

    Article  Google Scholar 

  • Ewoldt RH, Hosoi A, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458

    Article  Google Scholar 

  • Fardin MA, Lasne B, Cardoso O, régoire G, Argentina M, Decruppe JP, Lerouge S (2009) Taylor-like vortices in shear-banding flow of giant micelles. Phys Rev Lett 028(2):302

    Google Scholar 

  • Fardin MA, Lopez D, Croso J, Grégoire G, Cardoso O, McKinley G, Lerouge S (2010) Elastic turbulence in shear banding wormlike micelles. Phys Rev Lett 178(17):303

    Google Scholar 

  • Fardin MA, Ober T, Gay C, Grégoire G, McKinley G, Lerouge S (2011) Criterion for purely elastic taylor-couette instability in the flows of shear-banding fluids. Eur Phys Lett 96:44,004

    Article  Google Scholar 

  • Fardin MA, Lerouge S (2012a) Instabilities in wormlike micelle systems. Eur Phys J E 35(9):1–29

  • Fardin MA, Divoux T, Guedeau-Boudeville M, Buchet-Maulien I, Browaeys J, McKinley G, Manneville S, Lerouge S (2012b) Shear-banding in surfactant wormlike micelles: Elastic instabilities and wall slip. Soft Matter 8(8):2535–2553

  • Fardin MA, Ober T, Grenard V, Divoux T, Manneville S, McKinley G, Lerouge S (2012c) Interplay between elastic instabilities and shear-banding: Three categories of taylor–couette flows and beyond. Soft Matter 8(39):10,072–10,089

  • Fardin MA, Perge C, Taberlet N (2014a) “The hydrogen atom of fluid dynamics”—Introduction to the taylor-couette flow for soft matter scientists. Soft Matter 10:3523–3535

  • Fardin MA, Perge C, Taberlet N, Manneville S (2014b) Flow-induced structures versus flow instabilities. Phys Rev E 89(1): 011001

  • Ferry JD (1942) Mechanical properties of substances of high molecular weight. ii. rigidities of the system polystyrene-xylene and their dependence upon temperature and frequency. J Am Chem Soc 64(6):1323–1329

    Article  Google Scholar 

  • Gallot T, Perge C, Grenard V, Fardin MA, Taberlet N, Manneville S (2013) Ultrafast ultrasonic imaging coupled to rheometry: Principle and illustration. Rev Sci Instrum 84:045,107

    Article  Google Scholar 

  • Gharib M, Rambod E, Shariff K (1998) A universal time scale for vortex ring formation. J Fluid Mech 360:121–140

    Article  Google Scholar 

  • Giacomin AJ, Dealy JM (1993) Large-amplitude oscillatory shear. In: Techniques in rheological measurement:99–121

  • Glezer A (1988) The formation of vortex rings. Phys Fluids 31(12):3532–3542

    Article  Google Scholar 

  • Groisman A, Steinberg V (2000) Elastic turbulence in a polymer solution flow. Nature 405(6782):53–55

    Article  Google Scholar 

  • Gurnon AK, Lopez-Barron CR, Eberle APR, Porcar L, Wagner NJ (2014) Spatiotemporal stress and structure evolution in dynamically sheared polymer-like micellar solutions. Soft Matter 10:2889–2898

    Article  Google Scholar 

  • Hall P (1975) The stability of unsteady cylinder flows. J Fluid Mech 67(01):29–63

    Article  Google Scholar 

  • Hino M, Sawamoto M, Takasu S (1976) Experiments on transition to turbulence in an oscillatory pipe flow. J Fluid Mech 75(02):193–207

    Article  Google Scholar 

  • Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (laos). Prog Polym Sci 36(12):1697– 1753

    Article  Google Scholar 

  • Larson R, Shaqfeh ES, Muller S (1990) A purely elastic instability in taylor-couette flow. J Fluid Mech 218:573–600

    Article  Google Scholar 

  • Larson R (1992) Instabilities in viscoelastic flows. Rheol Acta 31(3):213–263

    Article  Google Scholar 

  • Larson R (1999) The structure and rheology of complex fluids. Oxford University Press

  • Lerouge S, Fardin MA, Argentina M, Grégoire G, Cardoso O (2008) Interface dynamics in shear-banding flow of giant micelles. Soft Matter 4(9):1808–1819

    Article  Google Scholar 

  • Lerouge S, Berret JF (2010) Shear-induced transitions and instabilities in surfactant wormlike micelles. Adv Polym Sci 230:1–71

    Article  Google Scholar 

  • Mallock A (1888) Proc R Soc London A 45:126–132

    Article  Google Scholar 

  • McKinley G, Pakdel P, Öztekin A (1996) Rheological and geometric scaling of purely elastic flow instabilities. J non-Newt Fluid mech 67:19–47

    Article  Google Scholar 

  • Merkli P, Thomann H (1975) Transition to turbulence in oscillating pipe flow. J Fluid Mech 68(03):567–576

    Article  Google Scholar 

  • Morozov AN, van Saarloos W (2007) An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows. Phys Rep 447(3):112–143

    Article  Google Scholar 

  • Muller SJ (2008) Elastically-influenced instabilities in taylor-couette and other flows with curved streamlines: a review. Korea-Australia Rheol J 20(3):117–125

    Google Scholar 

  • Ohmi M, Iguchi M, Kakehashi K, Masuda T (1982) Transition to turbulence and velocity distribution in an oscillating pipe flow. Bull JSME 25(201):365–371

    Article  Google Scholar 

  • Perge C, Fardin M, Manneville S (2014a) Surfactant micelles: Model systems for flow instabilities of complex fluids. Eur Phys J E 37:23

  • Perge C, Fardin MA, Manneville S (2014b) Inertio-elastic instability of non shear-banding wormlike micelles. Soft Matter 10:1450

  • Phan-Thien N (1985) Cone-and-plate flow of the oldroyd-b fluid is unstable. J Non-Newtonian Fluid Mech 17(1):37–44

    Article  Google Scholar 

  • Rogers S, Kohlbrecher J, Lettinga MP (2012) The molecular origin of stress generation in worm-like micelles, using a rheo-sans laos approach. Soft Matter 8:7831–7839

    Article  Google Scholar 

  • Sakiadis B (1961) Boundary-layer behavior on continuous solid surfaces: I. boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7(1):26–28

    Article  Google Scholar 

  • Schlichting H, Gersten K (2000) Boundary-layer theory. Springer Verlag

  • Sergeev S (1966) Fluid oscillations in pipes at moderate reynolds numbers. Fluid Dyn 1(1):121–122

    Article  Google Scholar 

  • Taylor G (1923) Stability of a viscous liquid contained between two rotating cylinders. Philos Trans R Soc London A 223:289–343

    Article  Google Scholar 

  • Torralba M, Castrejón-Pita J, Castrejón-Pita A, Huelsz G, Del Río J, Ortín J (2005) Measurements of the bulk and interfacial velocity profiles in oscillating newtonian and maxwellian fluids. Phys Rev E 72(1):016,308

    Article  Google Scholar 

  • Torralba M, Castrejón-Pita A, Hernández G, Huelsz G, Del Rio J, Ortín J (2007) Instabilities in the oscillatory flow of a complex fluid. Phys Rev E 75(5):056,307

    Article  Google Scholar 

  • Vasquez PA, Jin Y, Vuong K, Hill DB, Gregory Forest M (2013) A new twist on stokes second problem: Partial penetration of nonlinearity in sheared viscoelastic layers. J Non-Newtonian Fluid Mech 196:36–50

    Article  Google Scholar 

  • Yosick JA, Giacomin JA, Stewart WE, Ding F (1998) Fluid inertia in large amplitude oscillatory shear. Rheol acta 37(4):365–373

    Article  Google Scholar 

  • Zhou L, Cook LP, McKinley GH (2012) Multiple shear-banding transitions for a model of wormlike micellar solutions. SIAM J Appl Math 72(4):1192–1212

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Institut Universitaire de France and by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement No. 258803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Lerouge.

Additional information

Special issue devoted to novel trends in rheology

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fardin, M.A., Perge, C., Casanellas, L. et al. Flow instabilities in large amplitude oscillatory shear: a cautionary tale. Rheol Acta 53, 885–898 (2014). https://doi.org/10.1007/s00397-014-0818-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-014-0818-7

Keywords

Navigation