Skip to main content

Advertisement

Log in

TNF-α production in the skin

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Upregulation of TNF-α is a key early response to ultraviolet B (UVB) by keratinocytes (KCs), and represents an important component of the inflammatory cascade in skin. UVB irradiation induces TNF-α expression in both KCs and dermal fibroblasts, with TNF-α mRNA induction seen as early as 1.5 h after UVB. We previously reported that the effects are wavelength-specific: TNF-α expression and secretion are induced by UVB (290–320 nm), but not by UVA (320–400 nm). Moreover, we found that IL-1α, a cytokine also present in irradiated skin, substantially and synergistically enhances the induction of TNF-α by UVB, and the induction of TNF-α by this combination of UVB with IL-1α is mediated through increased TNF-α gene transcription. We investigated the molecular mechanism for UVB-induction of the TNF-α gene with a series of TNF-α promoter constructs, ranging from 1.2 kbp (from −1179 to +1 with respect to the TNF-α transcription initiation site) down to 0.1 kbp (−109 to +1), each driving expression of a CAT reporter. Our results showed a persistent nine to tenfold increase of CAT activity in all TNF-α promoter/reporter constructs in response to UVB (30 mJ/cm2) exposure. These results indicate the presence of UVB-responsive cis-element(s) located between −109 and +1 of the TNF-α promoter, a region that contains a putative AP-1 site and a putative NFkB site. UVB-induction was abolished when the TNF-α promoter was mutated by one base pair at the AP-1 binding site. Cells treated with SP600125, an AP-1 inhibitor that inhibits JNK (c-Jun N-terminal kinase), also showed suppression of the 0.1 kbp TNF-α promoter/reporter construct. The authentic endogenous gene in untransfected cells was also blocked by the inhibitor. Electrophoretic Mobility Shift Assay indicated new complexes from UVB-treated nuclear extracts and anti-phospho-c-Jun, a regulatory component of the AP-1 transcription factor, creating a supershift indicating increased phosphorylation of c-Jun and hence higher AP-1 activity. Keratinocyte-derived TNF-α is a component of the early induction phase of the inflammatory cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

KCs:

Keratinocytes

FBs:

Fibroblasts

UVB:

Ultraviolet B

TNF-α:

Tumor necrosis factor-α

References

  1. Abraham LJ, Kroeger KM (1999) Impact of the -308 TNF promoter polymorphism on the transcriptional regulation of the TNF gene: relevance to disease. J Leukoc Biol 66:562–566

    PubMed  CAS  Google Scholar 

  2. Adachi M, Gazel A, Pintucci G, Shuck A, Shifteh S, Ginsburg D et al (2003) Specificity in stress response: epidermal keratinocytes exhibit specialized UV-responsive signal transduction pathways. DNA Cell Biol 22:665–677. doi:10.1089/104454903770238148

    Article  PubMed  CAS  Google Scholar 

  3. Barkauskaite V, EK M, Popovic K, Harris HE, Wahren-Herlenius M, Nyberg F (2007) Translocation of the novel cytokine HMGB1 to the cytoplasm and extracellular space coincides with the peak of clinical activity in experimentally UV-induced lesions of cutaneous lupus erythematosus. Lupus 10:794–802. doi:10.1177/0961203307081895

    Article  Google Scholar 

  4. Bashir MM, Sharma M, Werth VP (2006) UVB-induction of TNF-α gene transcription requires a response element, overlapping the AP-1-binding site, of the proximal promoter. J Invest Dermatol 126:277. doi:10.1038/sj.jid.5700067

    Article  Google Scholar 

  5. Bashir M, Sharma M, Werth VP (2007) Mechanism of induction of TNF-α in response to UVB and IL-1α. J Invest Dermatol 127:S139

    Google Scholar 

  6. Bazzoni F, Kruys V, Shakhov A, Jongeneel CV, Beutler B (1994) Analysis of tumor necrosis factor promoter responses to ultraviolet light. J Clin Invest 93:56–62. doi:10.1172/JCI116984

    Article  PubMed  CAS  Google Scholar 

  7. Briscoe DM, Cotran RS, Pober JS (1992) Effects of tumor necrosis factor, lipopolysaccharide, and IL-4 on the expression of vascular cell adhesion molecule-1 in vivo. Correlation with CD3 + T cell infiltration. J Immunol 149:2954–2960

    PubMed  CAS  Google Scholar 

  8. Clingen PH, Berneburg M, Petit-Frere C, Woollons A, Lowe JE, Arlett CF et al (2001) Contrasting effects of an ultraviolet B and an ultraviolet A tanning lamp on interleukin-6, tumour necrosis factor-alpha and intercellular adhesion molecule-1 expression. Br J Dermatol 145:54–62. doi:10.1046/j.1365-2133.2001.04281.x

    Article  PubMed  CAS  Google Scholar 

  9. de Kossodo S, Cruz PD Jr, Dougherty I, Thompson P, Silva-Valdez M (1995) Expression of the tumor necrosis factor gene by dermal fibroblasts in response to ultraviolet irradiation or lipopolysaccharide. J Invest Dermatol 104:318–322. doi:10.1111/1523-1747.ep12665361

    Article  PubMed  Google Scholar 

  10. Fisher GJ, Datta SC, Talwar HS, Wang Z-Q, Varani J, Kang S et al (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379:335–339. doi:10.1038/379335a0

    Article  PubMed  CAS  Google Scholar 

  11. Fujisawa H, Wang B, Kondo S, Shivji GM, Sauder DN (1997) Costimulation with ultraviolet B and interleukin-1 alpha dramatically increase tumor necrosis factor-alpha production in human dermal fibroblasts. J Interferon Cytokine Res 17:307–313

    PubMed  CAS  Google Scholar 

  12. Kashiwa H, Wright SC, Bonavida B (1987) Regulation of B cell maturation and differentiation. I. Suppression of pokeweed mitogen-induced B cell differentiation by tumor necrosis factor (TNF). J Immunol 138:1383–1390

    PubMed  CAS  Google Scholar 

  13. Knight JC (2005) Regulatory polymorphisms underlying complex disease traits. J Mol Med 83:97–109. doi:10.1007/s00109-004-0603-7

    Article  PubMed  CAS  Google Scholar 

  14. Kock A, Schwarz T, Kirnbauer R, Urbanski A, Perry P, Ansel JC et al (1990) Human keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med 172:1609–1614. doi:10.1084/jem.172.6.1609

    Article  PubMed  CAS  Google Scholar 

  15. Kroeger KM, Carville KS, Abraham LJ (1997) The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol Immunol 34:391–399. doi:10.1016/S0161-5890(97)00052-7

    Article  PubMed  CAS  Google Scholar 

  16. Kroeger KM, Steer JH, Joyce DA, Abraham LJ (2000) Effects of stimulus and cell type on the expression of the -308 tumour necrosis factor promoter polymorphism. Cytokine 12:110–119. doi:10.1006/cyto.1999.0529

    Article  PubMed  CAS  Google Scholar 

  17. Krutmann J, Kock A, Schauer E, Parlow F, Moller A, Kapp A et al (1990) Tumor necrosis factor beta and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression. J Invest Dermatol 95:127–131. doi:10.1111/1523-1747.ep12477839

    Article  PubMed  CAS  Google Scholar 

  18. Lisby S, Hauser C (2002) Transcriptional regulation of tumor necrosis factor-alpha in keratinocytes mediated by interleukin-1beta and tumor necrosis factor-alpha. Exp Dermatol 11:592–598. doi:10.1034/j.1600-0625.2002.110612.x

    Article  PubMed  CAS  Google Scholar 

  19. Liu H, Sidiropoulos P, Song G, Pagliari LJ, Birrer MJ, Stein B et al (2000) TNF-alpha gene expression in macrophages: regulation by NF-kappa B is independent of c-Jun or C/EBP beta. J Immunol 164:4277–4285

    PubMed  CAS  Google Scholar 

  20. Matsuura K, Otsuka F, Fujisawa H (1998) Effects of interferons on tumour necrosis factor alpha production from human keratinocytes. Cytokine 10:500–505. doi:10.1006/cyto.1997.0326

    Article  PubMed  CAS  Google Scholar 

  21. Meller S, Winterberg F et al (2005) Ultraviolet radiation-induced injury, chemokines, and leukocyte recruitment: an amplification cycle triggering cutaneous lupus erythematosus. Arthritis Rheum 52:1504–1516. doi:10.1002/art.21034

    Article  PubMed  CAS  Google Scholar 

  22. Millard TP, Kondeatis E, Cox A, Wilson AG, Grabczynska SA, Carey BS et al (2001) A candidate gene analysis of three related photosensitivity disorders: cutaneous lupus erythematosus, polymorphic light eruption and actinic prurigo. Br J Dermatol 145:229–236. doi:10.1046/j.1365-2133.2001.04339.x

    Article  PubMed  CAS  Google Scholar 

  23. Niizeki H, Inoki H, Streilein JW (2002) Polymorphisms in the TNF region confer susceptibiilty to UVB-induced impairment of contact hypersensitivity induction in mice and humans. Methods 28:46–54. doi:10.1016/S1046-2023(02)00211-6

    Article  PubMed  CAS  Google Scholar 

  24. Pachman LM, Liotta-Davis MR, Hong DK, Kinsella TR, Mendez EP, Kinder JM et al (2000) TNFalpha-308A allele in juvenile dermatomyositis: association with increased production of tumor necrosis factor alpha, disease duration, and pathologic calcifications. Arthritis Rheum 43:2368–2377. doi:10.1002/1529-0131(200010)43:10<2368::AID-ANR26>3.0.CO;2-8

    Article  PubMed  CAS  Google Scholar 

  25. Palucka AK, Blanck JP, Bennett L, Pascual V, Banchereau J (2005) Cross-regulation of TNF and IFN-alpha in autoimmune diseases. Proc Natl Acad Sci USA 102:3372–3377. doi:10.1073/pnas.0408506102

    Article  PubMed  CAS  Google Scholar 

  26. Popovic K, EK M, Espinosa A, Padyukov L, Harris HE, Wahren-Herlenius M, Nyberg F (2005) Increased expression of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in skin lesions of patients with lupus erthematosus. Arthritis Rheum 52:3639–3645. doi:10.1002/art.21398

    Article  PubMed  CAS  Google Scholar 

  27. Schwarz A, Bhardwaj R, Aragane Y, Mahnke K, Riemann H, Metze D et al (1995) Ultraviolet-B-induced apoptosis of keratinocytes: evidence for partial involvement of tumor necrosis factor-alpha in the formation of sunburn cells. J Invest Dermatol 104:922–927. doi:10.1111/1523-1747.ep12606202

    Article  PubMed  CAS  Google Scholar 

  28. Solt LA, Madge LA, Orange JS, May MJ (2007) Interleukin-1-induced NF-κB activation is NEMO-dependent but does not require IKKbeta. JBC 282:8724–8733

    Google Scholar 

  29. Suschek CV, Mahotka C, Schnorr O, Kolb-Bachofen V (2004) UVB radiation-mediated expression of inducible nitric oxide synthase activity and the augmenting role of co-induced TNF-alpha in human skin endothelial cells. J Invest Dermatol 123:950–957. doi:10.1111/j.0022-202X.2004.23422.x

    Article  PubMed  CAS  Google Scholar 

  30. Swerlick RA, Lee KH, Li KLJ, Sepp NT, Caughman SW, Lawley TJ (1992) Regulation of vascular cell adhesion molecule 1 on human dermal microvascular endothelial cells. J Immunol 149:698–705

    PubMed  CAS  Google Scholar 

  31. Tanos T, Marinessen MJ, Leskow FC, Hochbaum D, Martinetto H, Gutkind JS et al (2005) Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP-1 response to UV light. J Biol Chem 280:18842–18852. doi:10.1074/jbc.M500620200

    Article  PubMed  CAS  Google Scholar 

  32. Wan YS, Wang ZQ, Voorhees J, Fisher G (2001) EGF receptor crosstalks with cytokine receptors leading to activation of c-Jun kinase in response to UV irradiation in human keratinocytes. Cell Signal 13:139–144. doi:10.1016/S0898-6568(00)00146-7

    Article  PubMed  CAS  Google Scholar 

  33. Werth VP, Zhang W (1999) Wavelength-specific synergy between ultraviolet radiation and interleukin-1 alpha in the regulation of matrix-related genes: mechanistic role for tumor necrosis factor-alpha. J Invest Dermatol 113:196–201. doi:10.1046/j.1523-1747.1999.00681.x

    Article  PubMed  CAS  Google Scholar 

  34. Werth VP, Zhang W, Dortzbach K, Sullivan K (2000) Association of a promoter polymorphism of TNFalpha with subacute cutaneous lupus erythematosus and distinct photoregulation of transcription. J Invest Dermatol 115:726–730. doi:10.1046/j.1523-1747.2000.00118.x

    Article  PubMed  CAS  Google Scholar 

  35. Yarosh D, Both D, Kibitel J, Anderson C, Elmets C, Brash D et al (2000) Regulation of TNFalpha production and release in human and mouse keratinocytes and mouse skin after UV-B radiation. Photodermatol Photoimmunol Photomed 16:263–270. doi:10.1034/j.1600-0781.2000.160606.x

    Article  PubMed  CAS  Google Scholar 

  36. Zhuang L, Wang B, Shinder GA, Shivji GM, Mak TW, Sauder DN (1999) TNF receptor p55 plays a pivotal role in murine keratinocyte apoptosis induced by ultraviolet B irradiation. J Immunol 162:1440–1447

    PubMed  CAS  Google Scholar 

  37. Zhuang L, Wang B, Sauder DN (2000) Molecular mechanism of ultraviolet-induced keratinocyte apoptosis. J Interferon Cytokine Res 20:445–454. doi:10.1089/10799900050023852

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The work is supported by a V.A. Merit Review Grant (V.P.W).

Conflict of interest statement

The authors have no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Werth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashir, M.M., Sharma, M.R. & Werth, V.P. TNF-α production in the skin. Arch Dermatol Res 301, 87–91 (2009). https://doi.org/10.1007/s00403-008-0893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-008-0893-7

Keywords

Navigation