Skip to main content

Advertisement

Log in

Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A new model for Archaean granitoid magmatism is presented which reconciles the most important geochemical similarities and differences between tonalite–trondhjemite–granodiorite (TTG) and potassic granitoids. Trace element abundances reveal a strong arc magmatism signature in all studied granitoids from Barberton Mountain Land. Characteristic features include HFSE depletion as well as distinct enrichment peaks of fluid-sensitive trace elements such as Pb in N-MORB normalisation, clearly indicating that all studied granitoids are derived from refertilised mantle above subduction zones. We envisage hydrous basaltic (s.l.) melts as parental liquids, which underwent extensive fractional crystallisation. Distinctive residual cumulates evolved depending on initial water content. High-H2O melts crystallised garnet/amphibole together with pyroxenes and minor plagioclase, but no olivine. This fractionation path ultimately led to TTG-like melts. Less hydrous basaltic melts also crystallised garnet/amphibole, but the lower compatible element content indicates that olivine was also a liquidus phase. Pronounced negative Eu-anomalies of the granitic melts, correlating with Na, Ca and Al, indicate plagioclase to be of major importance. In the context of our model, the post-Archaean disappearance of TTG and concomitant preponderance of granites (s.l.), therefore, is explained with secular decrease of aqueous fluid transport into subduction zones and/or efficiency of deep fluid release from slabs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Atherton NP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146

    CAS  Google Scholar 

  • Ayers J (1998) Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones. Contrib Mineral Petrol 132:390–404

    CAS  Google Scholar 

  • Azbel IY, Tolstikhin IN (1993) Accretion and early degassing of the Earth: constraints from Pu–U–I–Xe isotopic systems. Meteoritics 28:609–621

    CAS  Google Scholar 

  • Baker MB, Grove TL, Price R (1994) Primitive basalts and andesites from the Mt Shasta region, N California: products of varying melt fraction and water content. Contrib Mineral Petrol 118:111–129

    CAS  Google Scholar 

  • Barker F, Arth JG (1976) Generation of trondhjemitic–tonalitic liquids and Archean bimodal trondhjemite–basalt suites. Geology 4:596–600

    CAS  Google Scholar 

  • Bougalt H, Charlou JL, Fouquet Y, Needham HD, Vaslet N, Appriou P, Babtiste PJ, Rona PA, Dmitriev L, Silantiev S (1993) Fast and slow spreading ridges: structural and hydrothermal activity, ultramafic topographic highs, and CH4 output. J Geophys Res 98:9643–9651

    CAS  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37

    CAS  Google Scholar 

  • Crawford A, Falloon T, Green D (1989) Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed) Boninites and related rocks. Unwin and Hyman, London, pp 2–44

  • de Ronde CEJ, de Wit MJ (1994) Tectonic history of the Barberton greenstone belt, South Africa: 490 million years of Archean crustal evolution. Tectonics 13:983–1005

    Google Scholar 

  • de Wit MJ (1998) On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Res 91:181–226

    Article  Google Scholar 

  • de Wit MJ, Roering C, Hart RJ, Armstrong RA, de Ronde CEJ, Green RWE, Tredoux M, Peberdy E, Hart RA (1992) Formation of an Archaean continent. Nature 357:553–562

    Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    CAS  Google Scholar 

  • Defant MJ, Nielsen RL (1990) Interpretation of open system petrogenetic processes: Phase equilibria constraints on magma evolution. Geochim Cosmochim Acta 54:87–102

    CAS  Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95 (B13):21503–21521

    Google Scholar 

  • Galer SJG, Mezger K (1998) Metamorphism, denudation and sea level in the Archean and cooling of the Earth. Precambrian Res 92:389–412

    CAS  Google Scholar 

  • Gillis KM (1995) Controls on hydrothermal alteration in a section of fast-spreading oceanic crust. Earth Planet Sci Lett 134:473–489

    Article  CAS  Google Scholar 

  • Grove TL, Baker MB (1984) Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. J Geophys Res 89(B5):3253–3274

    CAS  Google Scholar 

  • Grove TL, Parman SW, Dann JC (1999) Conditions of magma generation for Archean komatiites from the Barberton Mountainland, South Africa. In: Fei Y, Bertky CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R (Joe) Boyd. Geochem Soc Spec Publ 6:155–167

    Google Scholar 

  • Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt Shasta region, N California. Contrib Mineral Petrol 142:375–396

    CAS  Google Scholar 

  • Hunter DR (1974) Crustal development in Kaapvaal craton 1. the Archean. Precambrian Res 1:259–294

    CAS  Google Scholar 

  • Jahn BM, Wu F, Capdevila R, Martineau F, Z hao Z, Wang Y (2001) Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos 59:171–198

    Article  CAS  Google Scholar 

  • Kamber BS, Collerson KD (2000) Role of 'hidden' deeply subducted slabs in mantle depletion. Chem Geol 166:241–254

    CAS  Google Scholar 

  • Kamber BS, Ewart A, Collerson KD, Bruce MC, McDonald GD (2002) Fluid-mobile trace element constraints on role of slab melting and implications for Archaean crustal growth models. Contrib Mineral Petrol 144:38–56

    CAS  Google Scholar 

  • Kamo SL, Davis DW (1994) Reassessment of Archaean crustal development in the Barberton Mountain Land, South Africa, based on U–Pb dating. Tectonics 13:167–192

    Google Scholar 

  • Kirstein LA, Peate DW, Hawkesworth CJ, Turner SP, Harris C, Mantovani MSM (2000) Early Cretaceous basaltic and rhyolitic magmatism in southern Uruguay associated with the opening of the South Atlantic. J Petrol 41(9):1413–1438

    Article  CAS  Google Scholar 

  • Lowe DR (1999) Geologic evolution of the Barberton Greenstone Belt and vicinity. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton Greenstone Belt, South Africa. Geol Soc Am Spec Pap 329:287–312

    Google Scholar 

  • Macdonald R, Hawkesworth CJ, Heath E (2000) The Lesser Antilles volcanic chain: a study in arc magmatism. Earth-Sci Rev 49:1–76

    CAS  Google Scholar 

  • Martin H (1986) Effect of steeper Archaean geothermal gradient on geochemistry of subduction zone magmas. Geology 14:753–756

    CAS  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    CAS  Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallisation of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Google Scholar 

  • Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. J Petrol 43(6):981–1001

    Article  CAS  Google Scholar 

  • Nguuri TK, Gore J, James DE, Webb SJ, Wright C, Zengeni TG, Gwavava O, Snoke JA, Group KS (2001) Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe Cratons. Geophys Res Lett 28(13):2501–2504

    Google Scholar 

  • Niu F, James DE (2002) Fine structure of the lowermost crust beneath the Kaapvaal craton and its implications for crustal formation and evolution. Earth Planet Sci Lett 200:121–130

    Article  CAS  Google Scholar 

  • Nutman AP, Bennett VC, Friend CRL, Norman MD (1999) Meta-igneous (non-gneissic) tonalites and quartz–diorites from an extensive ca. 3,800 Ma terrain south of the Isua supracrustal belt, southern West Greenland: constraints on early crust formation. Contrib Mineral Petrol 137:364–388

    Article  CAS  Google Scholar 

  • Parman SW, Dann JC, Grove TL, de Wit MJ (1997) Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 150:303–323

    CAS  Google Scholar 

  • Parman SW, Grove TL, Dann JC (2001) The production of Barberton komatiites in an Archean subduction zone. Geophys Res Lett 28(13):2513–2516

    CAS  Google Scholar 

  • Rudnick RL (1995) Making continental crust. Nature 378:571–578

    CAS  Google Scholar 

  • Schoenberg R (2000) Developments in Re–Os isotope analytics and applications of the system to ore forming processes and crust–mantle evolution. PhD Thesis, Mineralogical–Petrographical Institute, University of Bern, Switzerland

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    CAS  Google Scholar 

  • Smithies RH (2000) The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    CAS  Google Scholar 

  • Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55

    CAS  Google Scholar 

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325

    CAS  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc Lond Spec Publ 42:313–345

    Google Scholar 

  • Sylvester PJ (2001) Archaean magmatic record and crustal evolution. In: Cassidy KF, Dunphy JM, Van Kranendonk MJ (eds) 4th Int Arch Symp 2001/37, Australian Geological Survey Organisation on Geoscience, Perth, pp 25–27

  • Taylor PN, Kramers JD, Moorbath S, Wilson JF, Orpen JL, Martin A (1991) Pb/Pb, Sm–Nd and Rb–Sr geochronology in the Archean Craton of Zimbabwe. Chem Geol 87:175–196

    CAS  Google Scholar 

  • Ulmer P (2001) Partial melting in the mantle wedge—the role of H2O in the genesis of mantle-derived 'arc-related' magmas. Phys Earth Planet Int 127:215–232

    Article  CAS  Google Scholar 

  • Wood BJ, Blundy JD (2002) The effect of H2O on crystal-melt partitioning of trace elements. Geochim Cosmochim Acta 66:3647–3656

    Google Scholar 

  • Woodhead JD, Eggins SM, Johnson RW (1998) Magma genesis in the New Britain Island Arc: further insights into melting and mass transfer processes. J Petrol 39(9):1641–1668

    CAS  Google Scholar 

  • Wyllie PJ (1995) Experimental petrology of upper mantle materials, processes and products. J Geodyn 20(4):429–468

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jeff Ryan for a constructive review and one anonymous reviewer for his critical comments. Othmar Müntener is thanked for very helpful comments on an earlier version of the manuscript. We thank Ronny Schoenberg for providing samples from Barberton Mountain Land, South Africa, and Alan Greig for great lab support during the stay of ICK at the University of Queensland. This work has been supported by Swiss National Science Foundation grant no. 20-61933.00 to ICK and JDK. BSK acknowledges funding by UQ's PVC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilka C. Kleinhanns.

Additional information

Editorial responsibility: T.L. Grove

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinhanns, I.C., Kramers, J.D. & Kamber, B.S. Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa. Contrib Mineral Petrol 145, 377–389 (2003). https://doi.org/10.1007/s00410-003-0459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0459-9

Keywords

Navigation