Skip to main content
Log in

Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The diamond population from the Jagersfontein kimberlite is characterized by a high abundance of eclogitic, besides peridotitic and a small group of websteritic diamonds. The majority of inclusions indicate that the diamonds are formed in the subcratonic lithospheric mantle. Inclusions of the eclogitic paragenesis, which generally have a wide compositional range, include two groups of eclogitic garnets (high and low Ca) which are also distinct in their rare earth element composition. Within the eclogitic and websteritic suite, diamonds with inclusions of majoritic garnets were found, which provide evidence for their formation within the asthenosphere and transition zone. Unlike the lithospheric garnets all majoritic garnet inclusions show negative Eu-anomalies. A narrow range of isotopically light carbon compositions (δ13C −17 to −24 ‰) of the host diamonds suggests that diamond formation in the sublithospheric mantle is principally different to that in the lithosphere. Direct conversion from graphite in a subducting slab appears to be the main mechanism responsible for diamond formation in this part of the Earth’s mantle beneath the Kaapvaal Craton. The peridotitic inclusion suite at Jagersfontein is similar to other diamond deposits on the Kaapvaal Craton and characterized by harzburgitic to low-Ca harzburgitic compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akaogi M, Akimoto S (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Int 15:90–106

    Article  Google Scholar 

  • Aulbach S, Stachel T, Viljoen KS, Brey GP, Harris JW (2002) Eclogitic and websteritic diamond sources beneath the Limpopo Belt - Is slab-melting the link? Contrib Mineral Petrol 143:56–70

    Article  Google Scholar 

  • Boyd FR, Gurney JJ (1986) Diamonds and the African lithosphere. Science 232:472–477

    Article  Google Scholar 

  • Boyd SR, Mattey DP, Pillinger CT, Milledge HJ, Mendelssohn MJ, Seal M (1987) Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet Sci Lett 86:341–353

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Brey GP, Köhler T, Nickel KG (1990) Geothermobarometry in four-phase lherzolites I. Experimental results from 10 to 60 kb. J Petrol 31:1313–1352

    Google Scholar 

  • Bundy FP (1962) Direct conversion of graphite to diamond in static pressure apparatus. Science 137:1057–1058

    Article  Google Scholar 

  • Bureau H, Keppler H (1999) Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth Planet Sci Lett 165:187–196

    Article  Google Scholar 

  • Canil D, Schulze DJ, Hall D, Hearn Jr BC, Milliken SM (2003) Lithospheric roots beneath western Laurentia: the geochemical signal in mantle garnets. Can J Earth Sci 40:1027–1051

    Article  Google Scholar 

  • Cartigny P, Harris JW, Javoy M (2001) Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C-N concentrations in diamonds. Earth Planet Sci Lett 185:85–98

    Article  Google Scholar 

  • Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238

    Article  Google Scholar 

  • Davies RM, Griffin WL, Pearson NJ, Andrew AS, Doyle BJ, O’Reilly SY (1999) Diamonds from the deep: pipe DO-27, Slave Craton, Canada. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The J.B. Dawson Volume, Proceedings of the 7th International Kimberlite Conference. Red Roof Design, Capetown, pp 148–155

  • Davies RM, Griffin WL, O’Reilly SY, McCandless TE (2004) Inclusions in diamonds from the K14 and K10 kimberlites, Buffalo Head Hills, Alberta, Canada: diamond growth in a plume? Lithos 77:99–111

    Article  Google Scholar 

  • DeCarli PS, Jamieson JC (1961) Formation of diamond by explosive shock. Science 133:1821–1822

    Article  Google Scholar 

  • De Wit MJ, Roering C, Hart SR, Armstrong RA, De Rondie CEJ, Green RWE, Tredoux M, Peberdy E, Hart RA (1992) Formation of an Archean continent. Nature 357:553–562

    Article  Google Scholar 

  • Deines P (2001) The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 58:247–278

    Article  Google Scholar 

  • Deines P, Gurney J, Harris J (1984) Associated chemical and carbon isotopic composition variations in diamonds from Finsch and Premier kimberlite, South Africa. Geochim Cosmochim Acta 51:1227–1243

    Article  Google Scholar 

  • Deines P, Harris JW, Gurney JJ (1991a) The carbon isotopic composition and nitrogen content of lithospheric and asthenospheric diamonds from the Jagersfontein and Koffiefontein kimberlite, South Africa. Geochim Cosmochim Acta 55:2615–2625

    Article  Google Scholar 

  • Deines P, Harris JW, Robinson DN, Gurney JJ, Shee SR (1991b) Carbon and oxygen isotope variations in diamond and graphite eclogites from Orapa, Botswana, and the nitrogen-content of their diamonds. Geochim Cosmochim Acta 55:515–524

    Article  Google Scholar 

  • Deines P, Harris JW, Gurney JJ (1993) Depth-related carbon-isotope and nitrogen concentration variability in the mantle below the Orapa kimberlite, Botswana, Africa. Geochim Cosmochim Acta 57:2781–2796

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Int 25:297–356

    Article  Google Scholar 

  • Evans T, Harris JW (1989) Nitrogen aggregation, inclusion equilibration temperatures and the age of diamonds. In: Ross J et al (eds) Kimberlites and related rocks. Geol Soc Am Spec Publ vol 14. Blackwell, Carlton, pp 1001–1006

  • Farquhar J, Wing BA, McKeegan KD, Harris JW, Cartigny P, Thiemens MH (2002) Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298:2369–2372

    Article  Google Scholar 

  • Fischer TP, Hilton DR, Zimmer MM, Shaw AM, Sharp ZD, Walker JA (2002) Subduction and recycling of nitrogen along the Central American margin. Science 297:1154–1157

    Article  Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, De Wit M (2004) Early life recorded in Archean pillow lavas. Science 304:580–581

    Article  Google Scholar 

  • Galimov EM, Solov’yeva LV, Belomestnykh AV (1989) Carbon-isotope composition of metasomatized mantle rocks. Geochem Int 26:38–43

    Google Scholar 

  • Gasparik T (2002) Experimental investigation of the origin of majoritic garnet inclusions in diamonds. Phys Chem Min 29:170–180

    Article  Google Scholar 

  • Goldschmidt VM (1958) Geochemistry. Oxford University Press, London

    Google Scholar 

  • Gorokhov SS, Petrova NI, Kovalenko VS (1973) Experimental study of the alteration of biogenic carbon at high temperatures and pressures. Dokl Akad Nauk SSSR 209:194–196

    Google Scholar 

  • Gurney JJ, Harris JW, Rickard RS (1984) Silicate and oxide inclusions in diamonds from the Orapa Mine, Botswana. In: Kornprobst J (ed) Kimberlites II: the mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 1–9

    Google Scholar 

  • Harley S (1984) An experimental study of the partitioning of iron and magnesium between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373

    Article  Google Scholar 

  • Harte B (1992) Trace element characteristics of deep-seated eclogite parageneses - an ion microprobe study of inclusions in diamonds. V.M. Goldschmidt Conference, Geochem Soc, Reston, Virginia, pp A-48

  • Harte B, Harris JW (1994) Lower mantle associations preserved in diamonds. Mineral Mag 58A:384–385

    Article  Google Scholar 

  • Harte B, Harris JW, Hutchison MT, Watt GR, Wilding MC (1999) Lower mantle mineral associations in diamonds from São Luiz, Brazil. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle Petrology: Field Observations and High Pressure Experimentation: A tribute to Francis R. (Joe) Boyd. Geochem Soc Spec Pub, Houston, pp125–153

    Google Scholar 

  • Helmstaedt HH, Gurney JJ (1997) Geodynamic controls of kimberlites - what are the roles of hotspot and plate tectonics? In: Sobolev NV, Mitchell RH (eds) Proceedings of the 6th International Kimberlite Conference, Volume 2: Diamonds: Characterization, Genesis and Exploration. Russian Geol Geophys 38. Allerton Press, New York, pp394–404

  • Hutchison MT (1997) Constitution of the deep transition zone and lower mantle shown by diamonds and their inclusions. PhD Thesis, University of Edinburgh

  • Hutchison MT, Cartigny P, Harris JW (1999) Carbon and nitrogen composition and physical characteristics of transition zone and lower mantle diamonds from São Luiz, Brazil. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The J.B. Dawson Volume, Proceedings of the 7th International Kimberlite Conference. Red Roof Design, Capetown, pp372–382

  • Irifune T (1987) An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys Earth Planet Int 45:324–336

    Article  Google Scholar 

  • Irifune T, Koizumi T, Ando J (1996) An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3012. Phys Earth Planet Int 96:147–157

    Article  Google Scholar 

  • Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H (2003) Ultrahard polycrystalline diamond from graphite. Nature 421:599–600

    Article  Google Scholar 

  • Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G (1994) Diamondiferous eclogites from Siberia - Remnants of Archean oceanic crust. Geochim Cosmochim Acta 58:5191–5207

    Article  Google Scholar 

  • Javoy M, Pineau F, Iiyama I (1978) Experimental determination of the isotopic fractionation between gaseous CO2 and carbon dissolved in tholeiitic magma. Contrib Mineral Petrol 67:35–39

    Article  Google Scholar 

  • Jenkyns HC (1986) Pelagic environments. In: Reading HG (ed) Sedimentary environments and facies. Blackwell, Oxford, pp343–397

    Google Scholar 

  • Kaminsky FV, Zakharchenko OD, Davies RM, Griffin WL, Khachatryan-Blinova GK, Shiryaev AA (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Mineral Petrol 140:734–753

    Article  Google Scholar 

  • Kay R, Hubbard NJ, Gast PW (1970) Chemical characteristics and origin of oceanic ridge volcanic rocks. J Geophys Res 75:1585–1613

    Article  Google Scholar 

  • Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81:2467–2470

    Article  Google Scholar 

  • Kirkley MB, Gurney JJ, Otter ML, Hill SJ, Daniels LR (1991) The Application of C isotope measurements to the identification of the sources of C in diamonds - a review. Appl Geochem 6:477–494

    Article  Google Scholar 

  • Krogh EJ (1988) The garnet-clinopyroxene iron-magnesium geothermometer - a reinterpretation of existing experimental data. Contrib Mineral Petrol 99:44–48

    Article  Google Scholar 

  • Lock BE (1980) Flate-plate subduction and the Cape Fold Belt of South Africa. Geology 8:35–39

    Article  Google Scholar 

  • MacGregor ID, Manton WI (1986) Roberts Victor eclogites: ancient oceanic crust. J Geophys Res 91:14063–14079

    Article  Google Scholar 

  • Mattey DP (1987) Carbon isotopes in the mantle. Terra Cognita 7:31–37

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Meyer HOA (1987) Inclusions in diamond. In: Nixon PH (ed) Mantle xenoliths. Joh Wiley, Chichester, pp501–522

    Google Scholar 

  • Milledge HJ, Mendelssohn MJ, Seal M, Rouse JE, Swart PK, Pillinger CT (1983) Carbon isotopic variations in spectral type II diamonds. Nature 303:791–792

    Article  Google Scholar 

  • Moore RO, Gurney JJ (1985) Pyroxene solid solution in garnets included in diamonds. Nature 318:553–555

    Article  Google Scholar 

  • Moore RO, Gurney JJ (1989) Mineral inclusions in diamond from Monastery kimberlite, South Africa. In: Ross J et al. (eds) Kimberlites and related rocks. Geol Soc Am Spec Pub vol 14, Blackwell, Carlton, pp1029–1041

  • Moore RO, Gurney JJ, Griffin WL, Shimizu N (1991) Ultra-high pressure garnet inclusions in Monastery diamonds – Trace element abundance patterns and conditions of origin. Eur J Mineral 3:213–230

    Google Scholar 

  • Muehlenbachs K, Clayton RN (1976) Oxygen isotope composition of the oceanic crust and its bearing on seawater. J Geophys Res 81:4365–4369

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. J Geostandards Geoanalysis 21:115–144

    Article  Google Scholar 

  • Pearson DG, Shirey SB (1999) Isotopic dating of diamonds. In: Ruiz J, Lambert DD (eds) Applications of radiogenic isotopes to ore deposit research. Economic Geol Spec Pub: SEG Rev Economic Geol, pp143–171

  • Philpotts JA, Schnetzler CC (1968) Europium anomalies and the genesis of basalts. Chem Geol 3:5–13

    Article  Google Scholar 

  • Pokhilenko NP, Sobolev NP, Reutsky VN, Hall AE, Taylor LA (2004) Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system:evidence of ultradeep and enriched lithospheric mantle. Lithos 77:57–67

    Article  Google Scholar 

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38:279–296

    Article  Google Scholar 

  • Ringwood AE (1967) The pyroxene garnet transformation in the earth’s mantle. Earth Planet Sci Lett 2:255–263

    Article  Google Scholar 

  • Ringwood AE, Major A (1971) Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet Sci Lett 12:411–418

    Article  Google Scholar 

  • Schulze DJ, Harte B, Valley JW, Brenan JM, Channer DMD (2003) Extreme crustal oxygen isotope signatures preserved in coesite in diamond. Nature 423:68–70

    Article  Google Scholar 

  • Schulze DJ, Harte B, Valley JW, Channer DMD (2004) Evidence of subduction and crust-mantle mixing from a single diamond. Lithos 77:349–358

    Article  Google Scholar 

  • Scott Smith BH, Danchin RV, Harris JW, Stracke KJ (1984) Kimberlites near Orroroo, South Australia. In: Kornprobst J (ed) Kimberlites I: Kimberlites and related rocks. Elsevier, Amsterdam, pp 121–142

    Google Scholar 

  • Sobolev NV, Lavrentev YuG, Pokhilenko NP, Usova LV (1973) Chrome-rich garnets from the kimberlites of Yakutia and their paragenesis. Contrib Mineral Petrol 40:39–52

    Article  Google Scholar 

  • Stachel T (2001) Diamonds from the asthenosphere and the transition zone. Eur J Mineral 13:883–892

    Article  Google Scholar 

  • Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77:1–19

    Article  Google Scholar 

  • Stachel T, Brey GP, Harris JW (2000a) Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. Contrib Mineral Petrol 140:1–15

    Article  Google Scholar 

  • Stachel T, Harris JW, Brey GP, Joswig W (2000b) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib Mineral Petrol 140:16–27

    Article  Google Scholar 

  • Stachel T, Harris JW, Aulbach S, Deines P (2002) Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds. Contrib Mineral Petrol 142:465–475

    Article  Google Scholar 

  • Stachel T, Harris JW, Tappert R, Brey GP (2003) Peridotitic inclusions in diamonds from the Slave and the Kaapvaal cratons - similarities and differences based on a preliminary data set. Lithos 71:489–503

    Article  Google Scholar 

  • Thorseth IH, Torsvik T, Furnes H, Muehlenbachs K (1995) Microbes play an important role in the alteration of oceanic crust. Chem Geol 126:137–146

    Article  Google Scholar 

  • Torsvik T, Furnes H, Muehlenbachs K, Thorseth IH, Tumyr O (1998) Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth Planet Sci Lett 162:165–176

    Article  Google Scholar 

  • Tsai HM, Meyer HOA, Moreau J, Milledge HJ (1979) Mineral inclusions in diamonds: Premier, Jagersfontein and Finsch kimberlites, South Africa, and Williamson mine, Tanzania. In: Boyd FR, Meyer HOA (eds) Kimberlites, diatremes, and diamonds: Their geology, petrology, and geochemistry. AGU, Washington, DC

    Google Scholar 

  • Wagner PA (1914) The diamond fields of southern Africa. Transvaal Leader, Johannesburg

    Google Scholar 

  • Wilding MC (1990) PhD thesis, University of Edinburgh

  • Wyllie PJ, Ryabchikov ID (2000) Volatile components, magmas, and critical fluids in upwelling mantle. J Petrol 41:1195–1206

    Article  Google Scholar 

  • Zinner EK, Crozaz G (1986) A method for the quantitative measurement of rare earth elements in the ion microprobe. Int J Mass Spectrom Ion Processes 69:17–38

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Rainer Altherr for his support of the ion probe work. Tom Chacko, Larry Heaman, Bob Luth and Dan Schulze provided detailed comments on the manuscript. Ben Harte and Pierre Cartigny are thanked for their valuable criticism. Financial support to carry out this study was provided by the Deutsche Forschungsgemeinschaft (DFG) and NSERC. Support by DeBeers Consolidated Mines Ltd. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Tappert.

Additional information

Communicated by J. Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tappert, R., Stachel, T., Harris, J.W. et al. Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle. Contrib Mineral Petrol 150, 505–522 (2005). https://doi.org/10.1007/s00410-005-0035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0035-6

Keywords

Navigation