Skip to main content
Log in

Transport properties of high albite crystals, near-endmember feldspar and pyroxene glasses, and their melts to high temperature

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Thermal diffusivity (D) was measured using laser-flash analysis (LFA) from oriented single-crystal albite and glasses near LiAlSi3O8, NaAlSi3O8, CaAl2Si2O8, LiAlSi2O6 and CaMgSi2O6 compositions. Viscosity measurements of the supercooled liquids, over 2.6 × 108 to 8.9 × 1012 Pa s, confirm strongly non-Arrhenian behavior for CaAl2Si2O8, and CaMgSi2O6, and near-Arrhenian behavior for the others. As T increases, D glass decreases, approaching a constant near 1,000 K. Upon crossing the glass transition, D decreases rapidly. For feldspars, D for the melt is ~15% below D of the bulk crystal, whereas for pyroxenes, this difference is ~40%. Thermal conductivity (k lat = ρC P D) of crystals decreases with increasing T, but k lat of glasses increases with T because heat capacity (C P ) increases with T more strongly than density (ρ) and D decrease. For feldspars, k lat for the melt is ~10% below that of the bulk crystal or glass, whereas this decrease for pyroxene is ~50%. Therefore, melting substantially impedes heat transport, providing positive thermal feedback that could promote further melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adam G, Gibbs JH (1965) On the temperature dependence of relaxation phenomena in glass-forming liquids. J Chem Phys 43:139–146

    Article  Google Scholar 

  • Armstrong JT (1995) CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal 4(1995):177–200

    Google Scholar 

  • Berman RG (1988) Internally consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. J Petrol 29:445–522

    Google Scholar 

  • Berman G, Brown TH (1985) Heat capacity of minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2: representation, estimation, and high temperature extrapolation. Contrib Mineral Petrol 89:168–183

    Article  Google Scholar 

  • Blumm J, Lemarchand S (2002) Influence of test conditions on the accuracy of laser flash measurements. High Temp High Pres 34:523–528

    Article  Google Scholar 

  • Blumm J, Opfermann J (2002) Improvement of the mathematical modeling of flash measurements. High Temp High Pres 34:515–521

    Article  Google Scholar 

  • Boiret M, Urbain G (1987) Mesures de viscosités d’aluminosilicates de lithium. C R Acad Sci Paris série II 305:167–169

    Google Scholar 

  • Branlund JM, Hofmeister AM (2007) Thermal diffusivity of quartz to 1000°C: Effects of impurities and the a–b phase transition. Phys Chem Mineral 34:581–595

    Article  Google Scholar 

  • Cahill D, Watson SK, Pohl RO (1992) Lower limit of thermal conductivity of disordered solids. Phys Rev B 46:6131–6140

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Wiley, New York

    Google Scholar 

  • Dingwell DB, Webb SL (1990) Relaxation in silicate melts. Eur J Mineral 2:427–449

    Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Ahrens TJ (ed) Mineral physics and crystallography. A handbook of physical constants. American Geophysical Union, Washington, DC, pp 29–44

    Google Scholar 

  • Giesting PA, Hofmeister AM (2002) Thermal conductivity of disordered garnets from infrared spectroscopy. Phys Rev B 65, #144305

  • Hofmeister AM (2006) Thermal diffusivity of garnets at high temperature. Phys Chem Minerals 33:45–62

    Article  Google Scholar 

  • Hofmeister AM (2007) Thermal diffusivity of aluminous spinels and magnetite at elevated temperature with implications for heat transport in Earth’s transition zone. Am Mineral 92:1899–1911

    Article  Google Scholar 

  • Hofmeister AM, Pertermann M (2008) Thermal diffusivity of clinopyroxenes at elevated temperature. Eur J Min 20:537–549

    Article  Google Scholar 

  • Hofmeister AM, Yuen DA (2007) The threshold dependencies of thermal conductivity and implications on mantle dynamics. J Geodynamics 44:186–199

    Article  Google Scholar 

  • Hofmeister AM, Pertermann M, Branlund J, Whittington AG (2006) Geophysical implications of reduction in thermal conductivity due to hydration. Geophys Res Lett 33. doi: 10.1029/2006GL026036

  • Hofmeister AM, Pertermann M, Branlund JM (2007) Thermal conductivity of the earth. In: Schubert G (ed) Treatise in Geophysics (Schubert G, Ed. In Chief) V. 2 Mineral physics (Price GD, ed.). Elsevier, The Netherlands, pp 543–578

  • Hummel W, Arndt J (1985) Variation of viscosity with temperature and composition in the plagioclase system. Contribs Mineral Petrol 90:83–92

    Article  Google Scholar 

  • Johnson EA, Rossman GR (2003) The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am Mineral 88:901–911

    Google Scholar 

  • Knoche R, Dingwell DB, Webb SL (1992) Non-linear temperature dependence of liquid volumes in the system albite–anorthite–diopside. Contrib Mineral Petrol 111:61–73

    Article  Google Scholar 

  • Knoche R, Dingwell DB, Webb SL (1995) Melt densities for leucogranites and granitic pegmatites: partial molar volumes for SiO2, Al2O3, Na2O, K2O, Li2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, B2O3, P2O5, F2O–1, TiO2, Nb2O5, Ta2O5, and WO. Geochim Cosmochim Acta 59:4645–4652

    Article  Google Scholar 

  • Lange RA (1996) Temperature independent thermal expansivities of sodium aluminosilicate melts between 713 and 1835 K. Geochim Cosmochim Acta 60:4989–4996

    Article  Google Scholar 

  • Lange RA (2007) The density and compressibility of KAlSi3O8 liquid to 6.5 GPa. Am Mineral 92:114–123

    Article  Google Scholar 

  • Mehling H, Hautzinger G, Nilsson O, Fricke J, Hofmann R, Hahn O (1998) Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new mathematical model. Internatl J Thermophys 19:941–949

    Article  Google Scholar 

  • Mitra SS (1969) Infrared and Raman spectra due to lattice vibrations. In: Nudelman S, Mitra SS (eds) Optical properties of solids. Plenum Press, New York, pp 333–452

    Google Scholar 

  • Neuville DR (1992) Étude des propriétés thermodynamiques et rhéologiques des silicates fondus. Thèse, University of Paris 7, Paris

  • Neuville DR, Richet P (1991) Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets. Geochim Cosmochim Acta 55:1011–1019

    Article  Google Scholar 

  • Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Clarendon, Oxford, p 329

    Google Scholar 

  • Okamura S, Nakamura M, Nakashima S (2003) Determination of molar absorptivitiy of IR fundamental OH-stretching vibration in rhyolitic glasses. Am Mineral 88:1657–1662

    Google Scholar 

  • Parker JW, Jenkins JR, Butler PC, Abbott GI (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684

    Article  Google Scholar 

  • Pertermann M, Hofmeister AM (2006) Thermal diffusivity of olivine-group minerals. Am Mineral 91:1747–1760

    Article  Google Scholar 

  • Pertermann M, Whittington AG, Hofmeister AM, Spera FJ, Zayak J (2008) Thermal diffusivity of orthoclase glasses and single-crystals at high temperatures. Contributions to mineralogy and petrology 155:689–702. doi:10.1007/s00410-007-0265-x

    Article  Google Scholar 

  • Plazek DJ, Ngai KL (1991) Correlation of polymer segmental chain dynamics with temperature dependent time-scale shifts. Macromolecules 24:1222–1224

    Article  Google Scholar 

  • Ribbe PH, Megaw HD, Taylor WH, Ferguson RB, Traill RJ (1969) The albite structures. Acta Crystal 25B:1503–1518

    Article  Google Scholar 

  • Richet P (1984) Viscosity and configurational entropy of silicate melts. Geochim Cosmochim Acta 48:471–483

    Article  Google Scholar 

  • Richet P (1987) Heat capacity of silicate glasses. Chem Geol 62:111–124

    Article  Google Scholar 

  • Richet P, Bottinga Y (1984a) Glass transition and thermodynamic properties of SiO2, NaAlSinO2n+2 and KAlSi3O8. Geochim Cosmochim Acta 48:453–470

    Article  Google Scholar 

  • Richet P, Bottinga Y (1984b) Anorthite, andesine, wollastonite, diopside, cordierite and pyrope: thermodynamics of melting, glass transitions, and properties of the amorphous phases. Earth Planet Sci Lett 67:415–432

    Article  Google Scholar 

  • Richet P, Robie RA, Hemingway BS (1986) Low-temperature heat capacity of diopside glass (CaMgSi2O6): a calorimetric test of the configurational entropy theory applied to the viscosity of liquid silicates. Geochim Cosmochim Acta 50:1521–1533

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures U.S. Geological Survey Bulletin 2131

  • Romano C, Hess KU, Mincione V, Poe B, Dingwell DB (2001) The viscosities of hydrous XalSi3O8 (X = Li, Na, K, Ca0.5, Mg0.5) melts. Chem Geol 174:115–132

    Article  Google Scholar 

  • Rossman GR (1985) Vibrational spectroscopy of hydrous components. Rev Min 18:191–206

    Google Scholar 

  • Sass JH (1965) The thermal conductivity of fifteen feldspar specimens. J Geophys Res 70:4064–4065

    Article  Google Scholar 

  • Schulze F, Behrens H, Hurkuck W (1999) Determination of the influence of pressure and dissolved water on the viscosity of highly viscous melts: Application of a new parallel-plate viscometer. Am Mineral 84:1512–1520

    Google Scholar 

  • Shankland TJ (1972) Velocity-density systematics: derivation from Debye theory and the effect of ionic size. J Geophys Res 77:3750–3758

    Article  Google Scholar 

  • Shelby JE (1978) Viscosity and thermal expansion of lithium aluminosilicate glasses. J Appl Phys 49:5885–5891

    Article  Google Scholar 

  • Snyder D, Gier E, Carmichael I (1994) Experimental determination of the thermal conductivity of molten CaMgSi2O6 and the transport of heat through magmas. J Geophys Res 99:15503–15516

    Article  Google Scholar 

  • Stebbins JF, Carmichael ISE, Weill DE (1983) The high-temperature liquid and glass heat contents and heats of fusion of diopside, albite, sanidine, and nepheline. Am Mineral 68:717–730

    Google Scholar 

  • Stebbins JF, Carmichael ISE, Moret LK (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib Mineral Petrol 86:131–148

    Article  Google Scholar 

  • Stebbins JR, McMillan PF, Dingwell DB (1995) Structure, dynamics and properties of silicate Melts. In: Ribbe PH (ed) Reviews in Mineralogy, vol 32 (Min Soc Amer)

  • Tauber P, Arndt J (1987) The relationship between viscosity and temperature in the system anorthite–diopside. Chem Geol 62:71–81

    Article  Google Scholar 

  • Taylor TD, Rindone GE (1970) Properties of soda aluminosilicate glasses: V, low-temperature viscosities. J Am Ceram Soc 53:692–695

    Article  Google Scholar 

  • Tenner TJ, Lange RA, Downs RT (2007) The albite fusion curve re-examined: new experiments and the high-pressure density and compressibility of high albite and NaAlSi3O8 liquid. Am Mineral 92:1573–1585

    Article  Google Scholar 

  • Toplis MJ, Dingwell DB (2004) Shear viscosities of CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 liquids: Implications for the structural role of aluminium and the degree of polymerisation of synthetic and natural aluminosilicate melts. Geochim Cosmochim Acta 68:5169–5188

    Article  Google Scholar 

  • Toplis MJ, Richet P (2000) Equilibrium density and expansivity of silicate melts in the glass transition range. Contrib Mineral Petrol 139:672–683

    Article  Google Scholar 

  • Toplis MJ, Dingwell DB, Lenci T (1997a) Peraluminous viscosity maxima in Na2O–Al2O3–SiO2 liquids: the role of triclusters in silicate melts. Geochim Cosmochim Acta 61:2605–2612

    Article  Google Scholar 

  • Toplis MJ, Dingwell DB, Hess K-U, Lenci T (1997b) Viscosity, fragility, and configurational entropy of melts along the join SiO2–NaAlSiO4. Am Mineral 82:979–990

    Google Scholar 

  • Toplis MJ, Gottsmann J, Knoche R, Dingwell DB (2001) Heat capacities of haplogranitic glasses and liquids. Geochim Cosmochim Acta 65:1985–1994

    Article  Google Scholar 

  • Urbain G, Bottinga Y, Richet P (1982) Viscosity of liquid silica, silicates and aluminosilicates. Geochim Cosmochim Acta 46:1061–1072

    Article  Google Scholar 

  • Vo-Thanh D, Polian A, Richet P (1996) Elastic properties of silicate melts up to 2,350 K from Brillouin scattering. Geophys Research Lett 23:423–426

    Article  Google Scholar 

  • Whittington A, Richet P, Behrens H, Holtz F, Scaillet B (2004) Experimental temperature-X(H2O)-viscosity relationship for leucogranites, and comparison with synthetic silicic liquids. Trans Royal Soc Edinburgh Earth Sci 95:59–72

    Article  Google Scholar 

  • Whittington AG, Hellwig BM, Behrens H, Joachim B, Stechern A (2009a) The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas. Bull Volcanol 71:185–189

    Article  Google Scholar 

  • Whittington AG, Hofmeister AM, Nabelek PI (2009b) Temperature-dependent thermal diffusivity of Earth’s crust and implications for magmatism. Nature (in press)

  • Zulumyan NO, Mirgorodskii AP, Pavinich VF, Lazarev AN (1976) Study of calculation of the vibrational spectrum of a crystal with complex polyatomic anion. Diopside CaMgSi2O6. Opt Spectros 41:622–627

    Google Scholar 

Download references

Acknowledgments

MP was supported by National Science Foundation (NSF) grant EAR-0207198. AGW and AMH were supported by NSF grant EAR-0440119. We thank Paul Carpenter (W.U.) for providing microprobe analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Hofmeister.

Additional information

Communicated by T. L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmeister, A.M., Whittington, A.G. & Pertermann, M. Transport properties of high albite crystals, near-endmember feldspar and pyroxene glasses, and their melts to high temperature. Contrib Mineral Petrol 158, 381–400 (2009). https://doi.org/10.1007/s00410-009-0388-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0388-3

Keywords

Navigation