Skip to main content
Log in

Dielectric spectroscopy on aqueous electrolytic solutions

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

In this work, detailed dielectric measurements are presented on aqueous electrolytic solutions of NaCl and KCl in a broad frequency range, typical for modern telecommunication techniques. The complex dielectric permittivity or equivalently the complex conductivity are systematically studied as function of frequency (100 MHz–40 GHz), temperature (10–60°C) and molar concentration (0.001–1 mol/l). By a detailed analysis of the dielectric results using an asymmetrically broadened Cole–Davidson distribution of relaxation times, in addition to dc conductivity, the dielectric response as function of frequency, temperature, and molar concentration was fully parameterized by a total of 13 parameters. This model ansatz and the 13 parameters include an enormous predictive power, allowing a reasonable estimation of the dielectric constant, loss, and the conductivity for any set of external variables frequency, temperature and concentration. The proposed method is not only useful for rather simple electrolytic solutions, but also for cell suspensions and biological matter, if additional processes, especially at low frequencies, are adequately taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hasted JB (1973) Electrolytic solutions. In: Aqueous dielectrics. Chapman & Hall, London, pp 136–174

  2. Nörtemann K, Hilland J, Kaatze U (1997) Dielectric properties of aqueous NaCl solutions at microwave frequencies. J Phys Chem A 101:6864–6869

    Article  Google Scholar 

  3. Buchner R, Hefter GT, May PM (1999) Dielectric relaxation of aqueous NaCl solutions. J Phys Chem A 103:1–9

    Article  Google Scholar 

  4. Chen T, Hefter G, Buchner R (2003) Dielectric spectroscopy of aqueous solutions of KCl and CsCl. J Phys Chem A 107:4025–4031

    Article  Google Scholar 

  5. Wachter W, Kunz W, Buchner R, Hefter G (2005) Is there an anionic Hofmeister effect on water dynamics? Dielectric spectroscopy of aqueous solutions of NaBr, NaI, NaNO3, NaClO4, and NaSCN. J Phys Chem A 109:8675–8683

    Article  Google Scholar 

  6. Wachter W, Fernandez S, Buchner R, Hefter G (2007) Ion association and hydration in aqueous solutions of LiCl and Li2SO4 by dielectric spectroscopy. J Phys Chem B 111:9010–9017

    Article  Google Scholar 

  7. Loidl A, Lunkenheimer P, Gulich R, Wixforth A, Schneider M, Hänggi P, Schmid G (2006) Untersuchungen zu der Fragestellung, ob makroskopische dielektrische Gewebeeigenschaften auch auf Zellebene bzw. im subzellulären Bereich uneingeschränkte Gültigkeit besitzen: Bestandsaufnahme. http://www.emf-forschungsprogramm.de/forschung/dosimetrie/dosimetrie_verg/dosi_075_ZwB_01.pdf. Cited 3 Apr 2008

  8. Peyman A, Gabriel C, Grant EH (2007) Complex permittivity of sodium chloride solutions at microwave frequencies. Bioelectromagnetics 28:264–274

    Article  Google Scholar 

  9. Stogryn A (1971) Equations for calculating the dielectric constant of saline water. IEEE Trans Microwave Theory Tech MT19:733

    Google Scholar 

  10. Wei Y-Z, Sridhar S (1989) Technique for measuring the frequency-dependent complex dielectric-constants of liquids up to 20 GHz. Rev Sci Instrum 60:3041–3046

    Article  ADS  Google Scholar 

  11. Jiang GQ, Wong WH, Raskovich EY, Clark WG, Hines WA, Sanny J (1993) Open-ended coaxial-line technique for the measurement of the microwave dielectric-constant for low-loss solids and liquids. Rev Sci Instrum 64:1614–1621

    Article  ADS  Google Scholar 

  12. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. J Chem Phys 9:341–351

    Article  ADS  Google Scholar 

  13. Davidson DW, Cole RH (1950) Dielectric relaxation in glycerine. J Chem Phys 18:1417

    Article  ADS  Google Scholar 

  14. Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Glassy dynamics. Contemp Phys 41:15–36

    Article  ADS  Google Scholar 

  15. Lunkenheimer P, Loidl A (2002) Dielectric spectroscopy of glass-forming materials: α-relaxation and excess wing. Chem Phys 284:205–219

    Article  ADS  Google Scholar 

  16. Brand R, Lunkenheimer P, Schneider U, Loidl A (2000) Excess wing in the dielectric loss of glass-forming ethanol: a relaxation process. Phys Rev B 62:8878–8883

    Article  ADS  Google Scholar 

  17. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  18. Howell FS, Moynihan CT, Macedo PB (1984) Electrical relaxations in mixtures of lithium-chloride and glycerol. Bull Chem Soc Jpn 57:652–661

    Article  Google Scholar 

  19. Hasted JB, Ritson DM, Collie CH (1948) Dielectric properties of aqueous ionic solutions. Parts I and II. J Chem Phys 16:1–21

    Article  ADS  Google Scholar 

  20. Kohlrausch F, Holborn L (1916) Das Leitvermögen der Elektrolyte. Teubner, Leipzig

    Google Scholar 

  21. Debye P, Hückel E (1923) Zur Theorie der Elektrolyte.I.Gefrierpunktserniedrigungen und verwandte Erscheinungen. Phys Zeitschrift 24:185–206

    Google Scholar 

  22. Debye P, Hückel E (1923) Zur Theorie der Elektrolyte.II.Das Grenzgesetz für die elektrische Leitfähigkeit. Phys Zeitschrift 24:305–325

    Google Scholar 

  23. Schneider U, Lunkenheimer P, Pimenov A, Brand R, Loidl A (2001) Wide range dielectric spectroscopy on glass-forming materials: an experimental overview. Ferroelectrics 249:89–98

    Article  Google Scholar 

  24. Lunkenheimer P, Loidl A (2003) Response of disordered matter to electromagnetic fields. Phys Rev Lett 91:207601-1-207601-4

    Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Office for Radiation Protection within the German Mobile Telecommunication Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lunkenheimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulich, R., Köhler, M., Lunkenheimer, P. et al. Dielectric spectroscopy on aqueous electrolytic solutions. Radiat Environ Biophys 48, 107–114 (2009). https://doi.org/10.1007/s00411-008-0195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-008-0195-7

Keywords

Navigation