Skip to main content
Log in

Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Extensive epidemiological data indicate that inorganic arsenic is associated with several types of human cancer. Nevertheless, the underlying mechanisms are poorly understood. Among its mode of action are the alterations on DNA methylation, which provoke aberrant gene expression. However, beyond DNA methylation, little is known about arsenic’s effects on chromatin. In this study, we investigated the effects of sodium arsenite (NaAsO2) on global histone modifications and nucleosome-associated proteins. Our findings revealed that NaAsO2 exposure significantly increases global histone acetylation. This effect was related to the inhibition of histone deacetylase (HDAC) activity because NaAsO2 was able to inhibit HDACs comparable to the well-known HDAC inhibitor trichostatin A (TSA). Furthermore, analyses of the dynamic properties of the nucleosome-associated high mobility group N proteins demonstrate that NaAsO2 elevates their mobility. Thus, our data suggest that NaAsO2 induces chromatin opening by histone hyperacetylation due to HDAC inhibition and increase of the mobility of nucleosome-associated proteins. As the chromatin compaction is crucial for the regulation of gene expression as well as for genome stability, we propose that chromatin opening by NaAsO2 may play a significant role to impart its genotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barski A, Cuddapah S, Cui K, Roh T, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  PubMed  CAS  Google Scholar 

  • Cimini D, Mattiuzzo M, Torosantucci L, Degrassi F (2003) Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol Biol Cell 14:3821–3833

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Li S, Liu J, Diwan BA, Barrett JC, Waalkes MP (2004) Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: implications for arsenic hepatocarcinogenesis. Carcinogenesis 25:1779–1786

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Yan Y, Zhao D, Salnikow K (2003) Molecular mechanisms of nickel carcinogenesis: gene silencing by nickel delivery to the nucleus and gene activation/inactivation by nickel-induced cell signaling. J Environ Monit 5:222–223

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91:1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    PubMed  CAS  Google Scholar 

  • Gaymes TJ, Padua RA, Pla M, Orr S, Omidvar N, Chomienne C, Mufti GJ, Rassool FV (2006) Histone deacetylase inhibitors (HDI) cause DNA damage in leukemia cells: a mechanism for leukemia-specific HDI-dependent apoptosis? Mol Cancer Res 4:563–573

    Article  PubMed  CAS  Google Scholar 

  • Hake SB, Xiao A, Allis CD (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 90:761–769

    Article  PubMed  CAS  Google Scholar 

  • Harrer M, Luhrs H, Bustin M, Scheer U, Hock R (2004) Dynamic interaction of HMGA1a proteins with chromatin. J Cell Sci 117:3459–3471

    Article  PubMed  CAS  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  Google Scholar 

  • Hock R, Scheer U, Bustin M (1998) Chromosomal proteins HMG-14 and HMG-17 are released from mitotic chromosomes and imported into the nucleus by active transport. J Cell Biol 143:1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Hock R, Furusawa T, Ueda T, Bustin M (2007) HMG chromosomal proteins in development and disease. Trend in Cell Biol 17:72–79

    Article  CAS  Google Scholar 

  • Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287–299

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Li J, Gorospe M, Hutter D, Barnes J, Keyse SM, Liu Y (2001) Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation–acetylation. Mol Cell Biol 21:8213–8224

    Article  PubMed  CAS  Google Scholar 

  • Li J, Chen P, Sinogeeva N, Gorospe M, Wersto RP, Chrest FJ, Barnes J, Liu Y (2002) Arsenic trioxide promotes histone h3 phosphoacetylation at the chromatin of CASPASE-10 in acute promyelocytic leukemia cells. J Biol Chem 277:49504–49510

    Article  PubMed  CAS  Google Scholar 

  • Li J, Gorospe M, Barnes J, Liu Y (2003) Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-Fos and c-Jun chromatin in human diploid fibroblasts. J Biol Chem 278:13183–13191

    Article  PubMed  CAS  Google Scholar 

  • Lim JH, Catez F, Birger Y, West KL, Prymakowska-Bosak M, Postnikov YV, Bustin M (2004) Chromosomal protein HMGN1 modulates histone H3 phosphorylation. Mol Cell 15:573–584

    Article  PubMed  CAS  Google Scholar 

  • Lührs H, Hock R, Schauber J, Weihrauch M, Harrer M, Melcher R, Scheppach W, Bustin M, Menzel T (2002) Modulation of HMG-N2 binding to chromatin by butyrate-induced acetylation in human colon adenocarcinoma cells. Int J Cancer 97:567–573

    Article  PubMed  CAS  Google Scholar 

  • Lutz WK, Tiedge O, Lutz RW, Stopper H (2005) Different types of combination effects for the induction of micronuclei in mouse lymphoma cells by binary mixtures of the genotoxic agents MMS, MNU, and genistein. Toxicol Sci 86:318–323

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Mol Cell Biol 6:838–849

    Article  CAS  Google Scholar 

  • Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10:105–116

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  PubMed  CAS  Google Scholar 

  • Misteli T, Gunjan A, Hock R, Bustin M, Brown DT (2000) Dynamic binding of histone H1 to chromatin in living cells. Nature 408:877–881

    Article  PubMed  CAS  Google Scholar 

  • Olaharski AJ, Ji Z, Woo JY, Lim S, Hubbard AE, Zhang L, Smith MT (2006) The histone deacetylase inhibitor trichostatin A has genotoxic effects in human lymphoblasts in vitro. Toxicol Sci 93:341–347

    Article  PubMed  CAS  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    Article  PubMed  CAS  Google Scholar 

  • Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E et al (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527

    Article  PubMed  CAS  Google Scholar 

  • Polevoda B, Sherman F (2002) The diversity of acetylated proteins. Genome Biol 3:6.1–6.6

    Article  Google Scholar 

  • Pott WA, Benjamin SA, Yang RS (2001) Pharmacokinetics, metabolism, and carcinogenecity of arsenic. Rev Environ Contam Toxicol 169:165–214

    PubMed  CAS  Google Scholar 

  • Prymakowska-Bosak M, Misteli T, Herrera JE, Shirakawa H, Birger Y, Garfield S, Bustin M (2001) Mitotic phosphorylation prevents the binding of HMGN proteins to chromatin. Mol Cell Biol 21:5169–5178

    Article  PubMed  CAS  Google Scholar 

  • Ramirez T, Garcia-Montalvo V, Wise C, Cea-Olivares R, Poirier LA, Herrera LA (2003) S-adenosyl-l-methionine is able to reverse micronucleus formation induced by sodium arsenite and other cytoskeleton disrupting agents in cultured human cells. Mutat Res 528:61–74

    PubMed  CAS  Google Scholar 

  • Ramirez T, Stopper H, Hock R, Herrera LA (2007a) Prevention of aneuploidy by S-adenosyl-methionine in human cells treated with sodium arsenite. Mutat Res 617:16–22

    PubMed  CAS  Google Scholar 

  • Ramirez T, Stopper H, Fischer T, Hock R, Herrera LA (2007b) S-adenosyl-methionine counteracts the effects of sodium arsenite on cell cycle and chromosome segregation. Mutat Res (in press). DOI 10.1016/j.mrfmmm.2007.08.004

  • Rossman TG (2003) Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res 533:37–65

    PubMed  CAS  Google Scholar 

  • Rossman TG, Uddin AN, Burns FJ, Bosland MC (2002) Arsenite cocarcinogenesis: an animal model derived from genetic toxicology studies. Environ Health Perspect 110(Suppl 5):749–752

    PubMed  CAS  Google Scholar 

  • Sciandrello G, Caradonna F, Mauro M, Barbata G (2004) Arsenic-induced DNA hypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis 25:413–417

    Article  PubMed  CAS  Google Scholar 

  • Sutherland JE, Costa M (2003) Epigenetics and the environment. Ann NY Acad Sci 983:151–160

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Horinouchi S, Beppu T (1995) Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17:423–430

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Grunstein M (2000) 25 years of the nucleosome model: chromatin modifications. Trends Biochem Sci 25:619–623

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Rowley JD (2006) Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair 5:1282–1297

    Article  PubMed  CAS  Google Scholar 

  • Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci USA 94:10907–10912

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. L.A. Herrera for his comments to this manuscript and Thomas Fischer for his technical assistance. The work was supported by a graduate program (GK639) from the DFG. We thank the DAAD for grant support for T. Ramirez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hock.

Additional information

Communicated by T. Misteli

Tzutzuy Ramirez and Jan Brocher contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramirez, T., Brocher, J., Stopper, H. et al. Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma 117, 147–157 (2008). https://doi.org/10.1007/s00412-007-0133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0133-5

Keywords

Navigation