Skip to main content
Log in

Eye-tracking controlled cognitive function tests in patients with amyotrophic lateral sclerosis: a controlled proof-of-principle study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) primarily affects motor and speech abilities. In addition, cognitive functions are impaired in a subset of patients. There is a need to establish an eye movement-based method of neuropsychological assessment suitable for severely physically impaired patients with ALS. Forty-eight ALS patients and thirty-two healthy controls matched for age, sex and education performed a hand and speech motor-free version of the Raven’s coloured progressive matrices (CPM) and the D2-test which had been especially adapted for eye-tracking control. Data were compared to a classical motor-dependent paper–pencil version. The association of parameters of the eye-tracking and the paper–pencil version of the tests and the differences between and within groups were studied. Subjects presented similar results in the eye-tracking and the corresponding paper–pencil versions of the CPM and D2-test: a correlation between performance accuracy for the CPM was observed for ALS patients (p < 0.001) and controls (p < 0.001) and in the D2-test for controls (p = 0.048), whereas this correlation did not reach statistical significance for ALS patients (p = 0.096). ALS patients performed worse in the CPM than controls in the eye-tracking (p = 0.053) and the paper–pencil version (p = 0.042). Most importantly, eye-tracking versions of the CPM (p < 0.001) and the D2-test (p = 0.024) reliably distinguished between more and less cognitively impaired patients. Eye-tracking-based neuropsychological testing is a promising approach for assessing cognitive deficits in patients who are unable to speak or write such as patients with severe ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    Article  CAS  PubMed  Google Scholar 

  2. Brettschneider J, Del Tredici K, Toledo JB et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  4. Phukan J, Elamin M, Bede P et al (2012) The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 83:102–108

    Article  PubMed  Google Scholar 

  5. Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65:586–590

    Article  CAS  PubMed  Google Scholar 

  6. Abrahams S, Newton J, Niven E, Foley J, Bak TH (2014) Screening for cognition and behaviour changes in ALS. Amyotroph Lateral Scler Frontotemporal Degener 15:9–14

    Article  PubMed  Google Scholar 

  7. Olney RK, Murphy J, Forshew D et al (2005) The effects of executive and behavioral dysfunction in the course of ALS. Neurology 65:1774–1777

    Article  CAS  PubMed  Google Scholar 

  8. Elamin M, Phukan J, Bede P et al (2011) Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology 76:1263–1269

    Article  CAS  PubMed  Google Scholar 

  9. Chiò A, Vignola A, Mastro E et al (2010) Neurobehavioral symptoms in ALS are negatively related to caregivers’ burden and quality of life. Eur J Neurol 17:1298–1303

    Article  PubMed  Google Scholar 

  10. Lillo P, Mioshi E, Hodges JR (2012) Caregiver burden in amyotrophic lateral sclerosis is more dependent on patients’ behavioral changes than physical disability: a comparative study. BMC Neurol 12:156

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lakerveld J, Kotchoubey B, Kübler A (2008) Cognitive function in patients with late stage amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 79:25–29

    Article  CAS  PubMed  Google Scholar 

  12. Sharma R, Hicks S, Berna CM, Kennard C, Talbot K, Turner MR (2011) Oculomotor dysfunction in amyotrophic lateral sclerosis: a comprehensive review. Arch Neurol 68:857–861

    Article  PubMed  Google Scholar 

  13. Hicks SL, Sharma R, Khan AN et al (2013) An eye-tracking version of the trail-making test. PLoS One 8:e84061

    Article  PubMed Central  PubMed  Google Scholar 

  14. Cipresso P, Meriggi P, Carelli L et al (2013) Cognitive assessment of executive functions using brain computer interface and eye-tracking. EAI Endors Trans Ambient Syst 4:e4

  15. Raven JC, Court JH, Raven J (1998) Manual for Raven’s progressive matrices and vocabulary scales. Section 2, the coloured progressive matrices. Oxford Psychologists Press, Oxford

  16. Brickenkamp R (1994) Aufmerksamkeits-Belastungs-test (Test d2), 8th edn. Hogrefe, Göttingen

    Google Scholar 

  17. Elamin M, Bede P, Byrmin S et al (2013) Cognitive changes predict functional decline in ALS. Neurology 80:1590–1597

    Article  PubMed  Google Scholar 

  18. Ludolph AC, Langen KJ, Regard M et al (1992) Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand 85:81–89

    Article  CAS  PubMed  Google Scholar 

  19. Leeds L, Meara RJ, Woods R, Hobson JP (2001) A comparison of the new executive functioning domains of the CAMCOG-R with existing tests of executive function in elderly stroke survivors. Age Ageing 30:251–254

    Article  CAS  PubMed  Google Scholar 

  20. Sammer G, Reuter I, Hullmann K, Kaps M, Vaitl D (2006) Training of executive functions in Parkinson’s disease. J Neurol Sci 248:115–119

    Article  PubMed  Google Scholar 

  21. Palmieri A, Mento G, Calvo V et al (2014) Female gender doubles executive dysfunction risk in ALS: a case-control study in 165 patients. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2014-307654

    PubMed  Google Scholar 

  22. Yoshizawa K, Yasuda N, Fukuda M et al (2014) Syntactic comprehension in patients with amyotrophic lateral sclerosis. Behav Neurol. doi:10.1155/2014/230578

    PubMed Central  PubMed  Google Scholar 

  23. Brooks B, Miller R, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  24. Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci 169:13–21

    Article  CAS  PubMed  Google Scholar 

  25. Lulé D, Burkhardt C, Abdulla S et al (2014) The edinburgh cognitive and behavioural amyotrophic lateral sclerosis screen: a cross-sectional comparison of established screening tools in a German-Swiss population. Amyotroph Lateral Scler Frontotemporal Degener 8:1–8

    Google Scholar 

  26. Gorges M, Müller H-P, Lulé D, Ludolph AC, Pinkhardt EH, Kassubek J (2013) Functional connectivity within the default mode network is associated with saccadic accuracy in Parkinson’s Disease: a resting-state fMRI and videooculographic study. Brain Connect 3:265–272

    Article  PubMed  Google Scholar 

  27. Pinkhardt EH, Issa H, Gorges M et al (2014) Do eye movement impairments in patients with small vessel cerebrovascular disease depend on lesion load or on cognitive deficits? A videooculographic and MRI study. J Neurol 261:791–803

    Article  PubMed  Google Scholar 

  28. Schneider E, Villgrattner T, Vockeroth J et al (2009) EyeSeeCam: an eye movement-driven head camera for the examination of natural visual exploration. Ann N Y Acad Sci 1164:461–467

    Article  PubMed  Google Scholar 

  29. Pinkhardt EH, Jürgens R, Becker W, Valdarno F, Ludolph AC, Kassubek J (2008) Differential diagnostic value of eye movement recording in PSP-parkinsonism, Richardson’s syndrome, and idiopathic Parkinson’s disease. J Neurol 255:1916–1925

    Article  PubMed  Google Scholar 

  30. Gorges M, Müller H-P, Lulé D et al (2015) The association between alterations of eye movement control and cerebral intrinsic functional connectivity in Parkinson’s disease. Brain Imaging Behav. doi:10.1007/s11682-015-9367-7

    PubMed  Google Scholar 

  31. Wei Q, Chen X, Zheng Z et al (2014) Screening for cognitive impairment in a Chinese ALS population. Amyotroph Lateral Scler Frontotemporal Degener 13:1–6

    CAS  Google Scholar 

  32. Facon B, Magis D, Nuchadee ML, De Boeck P (2011) Do Raven’s Colored Progressive Matrices function in the same way in typical and clinical populations? Insights from the intellectual disability field. Intelligence 39:281–291

    Article  Google Scholar 

  33. Bates ME, Lemay EP Jr (2004) The d2 test of attention: construct validity and extensions in scoring techniques. J Int Neuropsychol Soc 10:392–400

    Article  PubMed  Google Scholar 

  34. Jelsone-Swain L, Persad C, Votruba KL et al (2012) The relationship between depressive symptoms, disease state, and cognition in amyotrophic lateral sclerosis. Front Psychol 3:542

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mioshi E, Caga J, Lillo P et al (2014) Neuropsychiatric changes precede classic motor symptoms in ALS and do not affect survival. Neurology 82:149–155

  36. Gallegos-Ayala G, Furdea A, Takano K, Ruf CA, Flor H, Birbaumer N (2014) Brain communication in a completely locked-in patient using bedside near-infrared spectroscopy. Neurology 82:1930–1932

    Article  PubMed Central  PubMed  Google Scholar 

  37. Donaghy C, Thurtell MJ, Pioro EP, Gibson JM, Leigh RJ (2011) Eye movements in amyotrophic lateral sclerosis and its mimics: a review with illustrative cases. J Neurol Neurosurg Psychiatry 82:110–116

    Article  PubMed  Google Scholar 

  38. Antoniades CA, Xu Z, Mason SL, Carpenter RH, Barker RA (2010) Huntington’s disease: changes in saccades and hand-tapping over 3 years. J Neurol 257:1890–1898

    Article  CAS  PubMed  Google Scholar 

  39. Martin NA, Landau S, Janssen A, Lyall R, Higginson I, Burman R et al (2014) Psychological as well as illness factors influence acceptance of non-invasive ventilation (NIV) and gastrostomy in amyotrophic lateral sclerosis (ALS): a prospective population study. Amyotroph Lateral Scler Frontotemporal Degener 15:376–387

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ralf Kühne for technical support. This work was funded by the Deutsche Forschungsgemeinschaft (DFG) and the Bundesministerium für Bildung und Forschung (BMBF #01GM1103A). This is an EU Joint Programme—Neurodegenerative Disease Research (JPND) project. The project is supported through the following organizations under the aegis of JPND—e.g. Germany, Bundesministerium für Bildung und Forschung (BMBF, FKZ), Sweden, Vetenskaprådet Sverige, Poland, Narodowe Centrum Badań i Rozwoju (NCBR).

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standard

The study was approved by the Ethics Committee of the University of Ulm (Statement No. 19/12) and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

All participants gave informed consent to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothée Lulé.

Additional information

J. Keller, M. Gorges contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, J., Gorges, M., Horn, H.T. et al. Eye-tracking controlled cognitive function tests in patients with amyotrophic lateral sclerosis: a controlled proof-of-principle study. J Neurol 262, 1918–1926 (2015). https://doi.org/10.1007/s00415-015-7795-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7795-3

Keywords

Navigation