Skip to main content
Log in

Experimental study on the effects of shear induced structure in a drag-reducing surfactant solution flow

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, The drag reduction characteristics of surfactant solutions have been experimentally studied, as well as, the shear viscosities of turbulent drag-reducing surfactant solution have been measured as a function of concentration, shear rate and temperature by using AG-G2 (TA Instruments, New Castle, USA) rheometer. In comparison the rheological property with the macroscopic behavior of the solutions in turbulent channel flow, a deeper insight into the mechanisms of drag-reducing surfactant solution has been obtained. For no shear induced structure of surfactant solutions they just show features shear thinning, but the drag reduction is very significant phenomenon. Surfactant solution of the shear induced structure is not a surfactant fluid drag reduction of the necessary elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Virk P.S.: Drag reduction fundamentals. ACHE J. 21(4), 625–657 (1975)

    Article  Google Scholar 

  2. Zakin J.L., LU B., Bewersdorff H.W.: Surfactant drag reduction. Rev. Chem. Eng. 14, 253–320 (1998)

    Google Scholar 

  3. Toms, B.A.: Some observations on the flow of linear polymer solutions straight tubes at large Reynolds numbers. In: Proceedings of 1st congress on rheology, North Holland, Amsterdam, pp. 135–141 (1948)

  4. Zakin, J.L., Myska, J., Lin, Z.: Similarities and differences in drag reduction behavior of high polymer and surfactant solutions. In: Proceeding of International Symposium on Seawater Drag Reduction, pp. 277–280 (1998a)

  5. Myska J., Chara Z.: The effect of a zwitterionic and cationic surfactant in turbulent flows. Exp. fluids 30, 229–236 (2001)

    Article  Google Scholar 

  6. Hetsroni G., Mosyak A., Talmon Y., Bernheim-Groswasser A.: The effect of a cationic surfactant on turbulent flow patterns. J. Heat Transf. 125, 947–950 (2003)

    Article  Google Scholar 

  7. Gasljevic K., Aguilar G., Matthys E.F.: An improved diameter scaling correlation for turbulent flow of drag-reducing polymer solutions. J. Non-Newtonian Fluid Mech. 84, 131–148 (1999)

    Article  MATH  Google Scholar 

  8. Suzuki H., Fuller G.G., Nakayama T., Usui H.: Development characteristics of drag-reducing surfactant solution flow in a duct. Rheol. Acta 43, 232–239 (2004)

    Article  Google Scholar 

  9. Aguilar G., Gasljevic K., Matthys E.F.: Asymptotes of maximum friction and heat transfer reductions for drag-redcing surfactant solutions. Int. J. Heat Transf. 44, 2835–2843 (2001)

    Article  MATH  Google Scholar 

  10. Li F.-C., Kawaguichi Y.: Investigation on the characteristics of turbulence transport for momentum and heat in a drag-reducing surfactant solution flow. Phys. fluids 16(9), 3281–3295 (2004)

    Article  Google Scholar 

  11. A.Kadoma I., Ylitalo, C., Van Egmond, J.: Structural transitions in wormlike micelles. Rheol. Acta 36(1), 1–12 (1997)

  12. Hofmann S., Stern P., Myska J.: Rheological behavior and birefringence investigations on drag-reducing surfactant solutions of tallow-(tris-hydroxyethyl)-ammonium acetate/sodiumsalicylate mixtures. Rheol. Acta 33, 419–430 (1994)

    Article  Google Scholar 

  13. Indrtono Y.S., Usui H., Suzuki H. et al.: Temperature and diameter effect on hydrodynamic characteristic of surfactant drag-reducing flows. Korea-Aust. Rheol. J. 17(4), 157–164 (2005)

    Google Scholar 

  14. Michael M.D., Schmidt G. et al.: The influence of a drag-reducing surfactant on a turbulent velocity field. J. Fluid Mech. 388, 1–20 (1999)

    Article  MATH  Google Scholar 

  15. Bewersdorff H.W., Ohlendorf D.: The behaviour of drag-reducing cationic surfactant solutions. Colloid Polym. Sci. 266, 941–953 (1988)

    Article  Google Scholar 

  16. Hu Y.T., Matthys E.F.: Characterization of micellar structure dynamics for a drag-reducing surfactant solution under shear: normal stress studies and flow geometry effects. Rheol. Acta 34, 450–460 (1995)

    Article  Google Scholar 

  17. Hu Y.T., Matthys E.F.: Effect of metal ions and compounds on the rheological properties of the drag-reducing cationic surfactant solution exhibiting shear-induced structure formation. J. Colloid Interf. Sci. 186, 352–359 (1997)

    Article  Google Scholar 

  18. Lu B., Zheng Y., Davis H.T., Scriven L.E., Talmon Y., Zakin J.L.: Effect of variations in counterion to surfactant ratio on rheology and microstructures of drag reducing cationic surfactant systems. Rheol. Acta 37, 528–548 (1988)

    Article  Google Scholar 

  19. Zhang Y., Schmidt J., Talmon Y., Zakin J.L.: Co-solvent effects on drag reduction, rheological properties and micelle microstructures of cationic surfactants. J. Colloid Interf. Sci. 286, 696–709 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Wang, D. & Chen, H. Experimental study on the effects of shear induced structure in a drag-reducing surfactant solution flow. Arch Appl Mech 79, 773–778 (2009). https://doi.org/10.1007/s00419-008-0251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0251-4

Keywords

Navigation