Skip to main content
Erschienen in: Archive of Applied Mechanics 6/2019

31.10.2018 | SPECIAL

Simulation of magnetised microstructure evolution based on a micromagnetics-inspired FE framework: application to magnetic shape memory behaviour

verfasst von: Karsten Buckmann, Björn Kiefer, Thorsten Bartel, Andreas Menzel

Erschienen in: Archive of Applied Mechanics | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microstructure evolution in magnetic materials is typically a non-local effect, in the sense that the behaviour at a material point depends on the magnetostatic energy stored within the demagnetisation field in the entire domain. To account for this, we propose a finite element framework in which the internal state variables parameterising the magnetic and crystallographic microstructure are treated as global fields, optimising a global potential. Contrary to conventional micromagnetics, however, the microscale is not spatially resolved and exchange energy terms are neglected in this approach. The influence of microstructure evolution is rather incorporated in an effective manner, which allows the computation of meso- and macroscale problems. This approach necessitates the development and implementation of novel mixed finite element formulations. It further requires the enforcement of inequality constraints at the global level. To handle the latter, we employ Fischer–Burmeister complementarity functions and introduce the associated Lagrange multipliers as additional nodal degrees-of-freedom. As a particular application of this general methodology, a recently established energy-relaxation-based model for magnetic shape memory behaviour is implemented and tested. Special cases—including ellipsoidal specimen geometries—are used to verify the magnetisation and field-induced strain responses obtained from finite element simulations by comparison to calculations based on the demagnetisation factor concept.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Allik, H., Hughes, T.J.R.: Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 2, 151–157 (1970)CrossRef Allik, H., Hughes, T.J.R.: Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 2, 151–157 (1970)CrossRef
2.
Zurück zum Zitat Arockiarajan, A., Menzel, A., Delibas, B., Seemann, W.: Computational modeling of rate-dependent domain switching in piezoelectric materials. Eur. J. Mech. A Solids 25, 950–964 (2006)MathSciNetCrossRefMATH Arockiarajan, A., Menzel, A., Delibas, B., Seemann, W.: Computational modeling of rate-dependent domain switching in piezoelectric materials. Eur. J. Mech. A Solids 25, 950–964 (2006)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Ask, A., Menzel, A., Ristinmaa, M.: Electrostriction in electro-viscoelastic polymers. Mech. Mater. 50, 9–21 (2012)CrossRef Ask, A., Menzel, A., Ristinmaa, M.: Electrostriction in electro-viscoelastic polymers. Mech. Mater. 50, 9–21 (2012)CrossRef
4.
Zurück zum Zitat Bartel, T., Hackl, K.: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. Zeitschrift für Angewandte Mathematik und Mechanik 89, 792–809 (2009)CrossRefMATH Bartel, T., Hackl, K.: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. Zeitschrift für Angewandte Mathematik und Mechanik 89, 792–809 (2009)CrossRefMATH
5.
Zurück zum Zitat Bartel, T., Menzel, A.: Modelling and simulation of cyclic thermomechanical behaviour of NiTi wires using a weak discontinuity approach. Int. J. Fract. 202, 281–293 (2016)CrossRef Bartel, T., Menzel, A.: Modelling and simulation of cyclic thermomechanical behaviour of NiTi wires using a weak discontinuity approach. Int. J. Fract. 202, 281–293 (2016)CrossRef
6.
Zurück zum Zitat Bartel, T., Menzel, A., Svendsen, B.: Thermodynamic and relaxation-based modeling of the interaction between martensitic phase transformations and plasticity. J. Mech. Phys. Solids 59(5), 1004–1019 (2011)MathSciNetCrossRefMATH Bartel, T., Menzel, A., Svendsen, B.: Thermodynamic and relaxation-based modeling of the interaction between martensitic phase transformations and plasticity. J. Mech. Phys. Solids 59(5), 1004–1019 (2011)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Bartels, A., Mosler, J.: Efficient variational constitutive updates for Allen–Cahn-type phase field theory coupled to continuum mechanics. Comput. Methods Appl. Mech. Eng. 317, 55–83 (2017)MathSciNetCrossRef Bartels, A., Mosler, J.: Efficient variational constitutive updates for Allen–Cahn-type phase field theory coupled to continuum mechanics. Comput. Methods Appl. Mech. Eng. 317, 55–83 (2017)MathSciNetCrossRef
8.
Zurück zum Zitat Biot, M.A.: Mechanics of Incremental Deformations. Wiley, New York (1965)CrossRef Biot, M.A.: Mechanics of Incremental Deformations. Wiley, New York (1965)CrossRef
9.
Zurück zum Zitat Brown Jr., W.F.: Micromagnetics, Interscience Tracts on Physics and Astronomy, vol. 18. Wiley, New York (1963) Brown Jr., W.F.: Micromagnetics, Interscience Tracts on Physics and Astronomy, vol. 18. Wiley, New York (1963)
10.
Zurück zum Zitat Brown Jr., W.F.: Magnetoelastic Interactions, Tracts in Natural Philosophy, vol. 9. Springer, New York (1966)CrossRef Brown Jr., W.F.: Magnetoelastic Interactions, Tracts in Natural Philosophy, vol. 9. Springer, New York (1966)CrossRef
11.
Zurück zum Zitat Bustamante, R., Dorfmann, A., Ogden, R.W.: Numerical solution of finite geometry boundary-value problems in nonlinear magnetoelasticity. Int. J. Solids Struct. 48(6), 874–883 (2011)CrossRefMATH Bustamante, R., Dorfmann, A., Ogden, R.W.: Numerical solution of finite geometry boundary-value problems in nonlinear magnetoelasticity. Int. J. Solids Struct. 48(6), 874–883 (2011)CrossRefMATH
12.
Zurück zum Zitat Canadija, M., Mosler, J.: On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. Int. J. Sol. Struct. 48, 1120–1129 (2011)CrossRefMATH Canadija, M., Mosler, J.: On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. Int. J. Sol. Struct. 48, 1120–1129 (2011)CrossRefMATH
13.
Zurück zum Zitat Chen, X., Moumni, Z., He, Y., Zhang, W.: A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys. J. Mech. Phys. Solids 64, 249–286 (2014)MathSciNetCrossRef Chen, X., Moumni, Z., He, Y., Zhang, W.: A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys. J. Mech. Phys. Solids 64, 249–286 (2014)MathSciNetCrossRef
14.
Zurück zum Zitat DeSimone, A.: Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125, 99–143 (1993)MathSciNetCrossRef DeSimone, A.: Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125, 99–143 (1993)MathSciNetCrossRef
15.
Zurück zum Zitat DeSimone, A.: Coarse-grained models of materials with non-convex free-energy: two case studies. Comput. Methods Appl. Mech. Eng. 193(48–51), 5129–5141 (2004)MathSciNetCrossRefMATH DeSimone, A.: Coarse-grained models of materials with non-convex free-energy: two case studies. Comput. Methods Appl. Mech. Eng. 193(48–51), 5129–5141 (2004)MathSciNetCrossRefMATH
16.
17.
Zurück zum Zitat DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Recent analytical developments in micromagnetics. In: Bertorti, G., Mayergoyz, I. (eds.) The Science of Hysteresis, Volume II: Physical Modeling, Micromagnetics, and Magnetization Dynamics, Chap. 4, pp. 269–381. Elsevier, Amsterdam (2006) DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Recent analytical developments in micromagnetics. In: Bertorti, G., Mayergoyz, I. (eds.) The Science of Hysteresis, Volume II: Physical Modeling, Micromagnetics, and Magnetization Dynamics, Chap. 4, pp. 269–381. Elsevier, Amsterdam (2006)
18.
Zurück zum Zitat Dusthakar, D.K., Menzel, A., Svendsen, B.: Laminate-based modelling of single and polycrystalline ferroelectric materials—application to tetragonal barium titanate. Mech. Mater. 117, 235–254 (2018)CrossRef Dusthakar, D.K., Menzel, A., Svendsen, B.: Laminate-based modelling of single and polycrystalline ferroelectric materials—application to tetragonal barium titanate. Mech. Mater. 117, 235–254 (2018)CrossRef
19.
Zurück zum Zitat Edelen, D.G.B.: On the existence of symmetry relations and dissipation potentials. Arch. Rat. Mech. Anal. 51, 218–227 (1973)MathSciNetCrossRefMATH Edelen, D.G.B.: On the existence of symmetry relations and dissipation potentials. Arch. Rat. Mech. Anal. 51, 218–227 (1973)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Ge, Y., Heczko, O., Söderberg, O., Lindroos, V.: Various magnetic domain structures in a Ni–Mn–Ga martensite exhibiting magnetic shape memory effect. J. Appl. Phys. 96, 2159–2163 (2004)CrossRef Ge, Y., Heczko, O., Söderberg, O., Lindroos, V.: Various magnetic domain structures in a Ni–Mn–Ga martensite exhibiting magnetic shape memory effect. J. Appl. Phys. 96, 2159–2163 (2004)CrossRef
22.
Zurück zum Zitat Haldar, K., Kiefer, B., Lagoudas, D.C.: Finite element analysis of the demagnetization effect and stress inhomogeneities in magnetic shape memory alloy samples. Philos. Mag. 91(32), 4126–4157 (2011)CrossRef Haldar, K., Kiefer, B., Lagoudas, D.C.: Finite element analysis of the demagnetization effect and stress inhomogeneities in magnetic shape memory alloy samples. Philos. Mag. 91(32), 4126–4157 (2011)CrossRef
23.
Zurück zum Zitat Haldar, K., Kiefer, B., Menzel, A.: Finite element simulation of rate-dependent magneto-active polymer response. Smart Mater. Struct. 25(10), 104003 (2016)CrossRef Haldar, K., Kiefer, B., Menzel, A.: Finite element simulation of rate-dependent magneto-active polymer response. Smart Mater. Struct. 25(10), 104003 (2016)CrossRef
24.
Zurück zum Zitat Heczko, O.: Magnetic shape memory effect and magnetization reversal. J. Magn. Magn. Mater. 290–291(2), 787–794 (2005)CrossRef Heczko, O.: Magnetic shape memory effect and magnetization reversal. J. Magn. Magn. Mater. 290–291(2), 787–794 (2005)CrossRef
25.
Zurück zum Zitat Heczko, O., Straka, L., Ullakko, K.: Relation between structure, magnetization process and magnetic shape memory effect of various martensites occurring in Ni–Mn–Ga alloys. J. Phys. IV 112, 959–962 (2003) Heczko, O., Straka, L., Ullakko, K.: Relation between structure, magnetization process and magnetic shape memory effect of various martensites occurring in Ni–Mn–Ga alloys. J. Phys. IV 112, 959–962 (2003)
26.
Zurück zum Zitat Hwang, C.S., McMeeking, M.R.: A finite element model of ferroelastic polycrystals. Ferroelectrics 211, 177–194 (1998)CrossRefMATH Hwang, C.S., McMeeking, M.R.: A finite element model of ferroelastic polycrystals. Ferroelectrics 211, 177–194 (1998)CrossRefMATH
27.
Zurück zum Zitat James, R.D., Kinderlehrer, D.: Theory of magnetostriction with applications to \(\rm Tb_xDy_{1-x}Fr_2\). Philos. Mag. B 68(2), 237–274 (1993)CrossRef James, R.D., Kinderlehrer, D.: Theory of magnetostriction with applications to \(\rm Tb_xDy_{1-x}Fr_2\). Philos. Mag. B 68(2), 237–274 (1993)CrossRef
28.
Zurück zum Zitat Javili, A., Chatzigeorgiou, G., Steinmann, P.: Computational homogenization in magneto-mechanics. Int. J. Solids Struct. 50(25–26), 4197–4216 (2013)CrossRef Javili, A., Chatzigeorgiou, G., Steinmann, P.: Computational homogenization in magneto-mechanics. Int. J. Solids Struct. 50(25–26), 4197–4216 (2013)CrossRef
29.
Zurück zum Zitat Kaliappan, J., Menzel, A.: Modelling of non-linear switching effects in piezoceramics: a three-dimensional polygonal finite-element-based approach applied to oligo-crystals. J. Intell. Mater. Syst. Struct. 26(17), 2322–2337 (2015)CrossRef Kaliappan, J., Menzel, A.: Modelling of non-linear switching effects in piezoceramics: a three-dimensional polygonal finite-element-based approach applied to oligo-crystals. J. Intell. Mater. Syst. Struct. 26(17), 2322–2337 (2015)CrossRef
30.
Zurück zum Zitat Kamlah, M., Böhle, U.: Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int. J. Solids Struct. 38, 605–633 (2001)CrossRefMATH Kamlah, M., Böhle, U.: Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int. J. Solids Struct. 38, 605–633 (2001)CrossRefMATH
31.
Zurück zum Zitat Kazaryan, A., Wang, Y., Jin, Y.M., Wang, Y.U., Khachaturyan, A.G., Wang, L., Laughlin, D.E.: Development of magnetic domains in hard ferromagnetic thin films of polytwinned microstructure. J. Appl. Phys. 92(12), 7408–7414 (2002)CrossRef Kazaryan, A., Wang, Y., Jin, Y.M., Wang, Y.U., Khachaturyan, A.G., Wang, L., Laughlin, D.E.: Development of magnetic domains in hard ferromagnetic thin films of polytwinned microstructure. J. Appl. Phys. 92(12), 7408–7414 (2002)CrossRef
32.
Zurück zum Zitat Kiefer, B.: A phenomenological constitutive model for magnetic shape memory alloys. Ph.D. dissertation, Department of Aerospace Engineering, Texas A&M University, College Station, TX (2006) Kiefer, B.: A phenomenological constitutive model for magnetic shape memory alloys. Ph.D. dissertation, Department of Aerospace Engineering, Texas A&M University, College Station, TX (2006)
33.
Zurück zum Zitat Kiefer, B., Bartel, T., Menzel, A.: Implementation of numerical integration schemes for the simulation of magnetic sma constitutive response. Smart Mater. Struct. 21(9), 094007 (2012)CrossRef Kiefer, B., Bartel, T., Menzel, A.: Implementation of numerical integration schemes for the simulation of magnetic sma constitutive response. Smart Mater. Struct. 21(9), 094007 (2012)CrossRef
34.
Zurück zum Zitat Kiefer, B., Buckmann, K., Bartel, T.: Numerical energy relaxation to model microstructure evolution in functional magnetic materials. GAMM Mitt. 38(1), 171–196 (2015)MathSciNetCrossRef Kiefer, B., Buckmann, K., Bartel, T.: Numerical energy relaxation to model microstructure evolution in functional magnetic materials. GAMM Mitt. 38(1), 171–196 (2015)MathSciNetCrossRef
35.
Zurück zum Zitat Kiefer, B., Lagoudas, D.C.: Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. Spec. Issue Recent Adv. Theor. Mech. 85(33–35), 4289–4329 (2005) Kiefer, B., Lagoudas, D.C.: Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. Spec. Issue Recent Adv. Theor. Mech. 85(33–35), 4289–4329 (2005)
36.
Zurück zum Zitat Kiefer, B., Lagoudas, D.C.: Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading. J. Intelli. Mater. Syst. Struct. 20(2), 143–170 (2009)CrossRef Kiefer, B., Lagoudas, D.C.: Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading. J. Intelli. Mater. Syst. Struct. 20(2), 143–170 (2009)CrossRef
37.
Zurück zum Zitat Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1996)MATH Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1996)MATH
38.
Zurück zum Zitat Landis, C.M.: A new finite element formulation for electromechanical boundary value problems. Int. J. Numer. Methods Eng. 55(5), 613–628 (2002)CrossRefMATH Landis, C.M.: A new finite element formulation for electromechanical boundary value problems. Int. J. Numer. Methods Eng. 55(5), 613–628 (2002)CrossRefMATH
39.
Zurück zum Zitat Linnemann, K., Klinkel, S., Wagner, W.: A constitutive model for magnetostrictive and piezoelectric materials. Int. J. Solids Struct. 46, 1149–1166 (2009)CrossRefMATH Linnemann, K., Klinkel, S., Wagner, W.: A constitutive model for magnetostrictive and piezoelectric materials. Int. J. Solids Struct. 46, 1149–1166 (2009)CrossRefMATH
40.
Zurück zum Zitat Menzel, A., Denzer, R., Steinmann, P.: On the comparison of two approaches to compute material forces for inelastic materials. Application to single-slip crystal–plasticity. Comput. Methods Appl. Mech. Eng. 193(48–51), 5411–5428 (2004)MathSciNetCrossRefMATH Menzel, A., Denzer, R., Steinmann, P.: On the comparison of two approaches to compute material forces for inelastic materials. Application to single-slip crystal–plasticity. Comput. Methods Appl. Mech. Eng. 193(48–51), 5411–5428 (2004)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Miehe, C.: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Methods Eng. 55(11), 1285–1322 (2002)MathSciNetCrossRefMATH Miehe, C.: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Methods Eng. 55(11), 1285–1322 (2002)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Miehe, C., Ethiraj, G.: A geometrically consistent incremental variational formulation for phase field models in micromagnetics. Comput. Methods Appl. Mech. Eng. 245–246, 331–347 (2012)MathSciNetCrossRefMATH Miehe, C., Ethiraj, G.: A geometrically consistent incremental variational formulation for phase field models in micromagnetics. Comput. Methods Appl. Mech. Eng. 245–246, 331–347 (2012)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Miehe, C., Kiefer, B., Rosato, D.: An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level. Int. J. Solids Struct. 48(13), 1846–1866 (2011)CrossRef Miehe, C., Kiefer, B., Rosato, D.: An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level. Int. J. Solids Struct. 48(13), 1846–1866 (2011)CrossRef
44.
Zurück zum Zitat Miehe, C., Rosato, D., Kiefer, B.: Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int. J. Numer. Methods Eng. 86(10), 1225–1276 (2011)MathSciNetCrossRefMATH Miehe, C., Rosato, D., Kiefer, B.: Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int. J. Numer. Methods Eng. 86(10), 1225–1276 (2011)MathSciNetCrossRefMATH
45.
Zurück zum Zitat O’Handley, R.C.: Modern Magnetic Materials. Wiley, New York (2000) O’Handley, R.C.: Modern Magnetic Materials. Wiley, New York (2000)
46.
Zurück zum Zitat Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–444 (1999)MathSciNetCrossRefMATH Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–444 (1999)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Schmidt-Baldassari, M.: Numerical concepts for rate-independent single crystal plasticity. Comput. Methods Appl. Mech. Eng. 192, 1261–1280 (2003)CrossRefMATH Schmidt-Baldassari, M.: Numerical concepts for rate-independent single crystal plasticity. Comput. Methods Appl. Mech. Eng. 192, 1261–1280 (2003)CrossRefMATH
48.
Zurück zum Zitat Schrefl, T.: Finite elements in numerical micromagnetics part I: granular hard magnets. J. Magn. Magn. Mater. 207, 45–65 (1999)CrossRef Schrefl, T.: Finite elements in numerical micromagnetics part I: granular hard magnets. J. Magn. Magn. Mater. 207, 45–65 (1999)CrossRef
49.
Zurück zum Zitat Schrefl, T.: Finite elements in numerical micromagnetics part II: patterned magnetic elements. J. Magn. Magn. Mater. 207, 66–77 (1999)CrossRef Schrefl, T.: Finite elements in numerical micromagnetics part II: patterned magnetic elements. J. Magn. Magn. Mater. 207, 66–77 (1999)CrossRef
50.
Zurück zum Zitat Schröder, J., Romanowski, H.: A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting. Arch. Appl. Mech. 74, 863–877 (2005)CrossRefMATH Schröder, J., Romanowski, H.: A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting. Arch. Appl. Mech. 74, 863–877 (2005)CrossRefMATH
51.
Zurück zum Zitat Straka, L., Heczko, O.: Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic fields. J. Magn. Magn. Mater. 290–291(2), 829–831 (2005)CrossRef Straka, L., Heczko, O.: Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic fields. J. Magn. Magn. Mater. 290–291(2), 829–831 (2005)CrossRef
52.
Zurück zum Zitat Straka, L., Heczko, O., Novak, V., Lanska, N.: Study of austenite–martensite transformation in Ni–Mn–Ga magnetic shape memory alloy. J. Phys. IV 112, 911–915 (2003) Straka, L., Heczko, O., Novak, V., Lanska, N.: Study of austenite–martensite transformation in Ni–Mn–Ga magnetic shape memory alloy. J. Phys. IV 112, 911–915 (2003)
53.
Zurück zum Zitat Thylander, S., Menzel, A., Ristinmaa, M.: A non-affine electro-viscoelastic micro-sphere model for dielectric elastomers: application to VHB 4910 based actuators. J. Intell. Mater. Syst. Struct. 28(5), 627–639 (2017)CrossRef Thylander, S., Menzel, A., Ristinmaa, M.: A non-affine electro-viscoelastic micro-sphere model for dielectric elastomers: application to VHB 4910 based actuators. J. Intell. Mater. Syst. Struct. 28(5), 627–639 (2017)CrossRef
54.
Zurück zum Zitat Tickle, R.: Ferromagnetic shape memory materials. Ph.D. dissertation, University of Minnesota (2000) Tickle, R.: Ferromagnetic shape memory materials. Ph.D. dissertation, University of Minnesota (2000)
55.
Zurück zum Zitat Tickle, R., James, R.D.: Magnetic and magnetomechanical properties of Ni\(_2\)MnGa. J. Magn. Magn. Mater. 195(3), 627–638 (1999)CrossRef Tickle, R., James, R.D.: Magnetic and magnetomechanical properties of Ni\(_2\)MnGa. J. Magn. Magn. Mater. 195(3), 627–638 (1999)CrossRef
56.
Zurück zum Zitat Wang, J., Steinmann, P.: On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. II: numerical algorithm. Contin. Mech. Thermodyn. 28(3), 669–698 (2016)MathSciNetCrossRefMATH Wang, J., Steinmann, P.: On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. II: numerical algorithm. Contin. Mech. Thermodyn. 28(3), 669–698 (2016)MathSciNetCrossRefMATH
57.
Zurück zum Zitat Ziegler, H.: Some Extremum Principles in Irreversible Thermodynamics with Application to Continuum Mechanics. No. IV in Progress in Solid Mechanics. North-Holland, Amsterdam (1963) Ziegler, H.: Some Extremum Principles in Irreversible Thermodynamics with Application to Continuum Mechanics. No. IV in Progress in Solid Mechanics. North-Holland, Amsterdam (1963)
Metadaten
Titel
Simulation of magnetised microstructure evolution based on a micromagnetics-inspired FE framework: application to magnetic shape memory behaviour
verfasst von
Karsten Buckmann
Björn Kiefer
Thorsten Bartel
Andreas Menzel
Publikationsdatum
31.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 6/2019
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1482-7

Weitere Artikel der Ausgabe 6/2019

Archive of Applied Mechanics 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.