Skip to main content
Log in

Maintained cerebrovascular function during post-exercise hypotension

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The post-exercise period is associated with hypotension, and an increased risk of syncope attributed to decreases in venous return and/or vascular resistance. Increased local and systemic vasodilators, sympatholysis, and attenuated baroreflex sensitivity following exercise are also manifest. Although resting cerebral blood flow is maintained, cerebrovascular regulation to acute decreases in blood pressure has not been characterized following exercise. We therefore aimed to assess cerebrovascular regulation during transient bouts of hypotension, before and after 40 min of aerobic exercise at 60 % of estimated maximum oxygen consumption. Beat to beat blood pressure (Finometer), heart rate (ECG), and blood velocity in the middle cerebral artery (MCAv; transcranial Doppler ultrasound) were assessed in ten healthy young humans. The MCAv-mean arterial pressure relationship during a pharmacologically (i.v. sodium nitroprusside) induced transient hypotension was assessed before and at 10, 30, and 60 min following exercise. Despite a significant reduction in mean arterial pressure at 10 min post-exercise (−10 ± 6.9 mmHg; P < 0.05) and end-tidal PCO2 (10 min post: −2.9 ± 2.6 mmHg; 30 min post: −3.9 ± 3.5 mmHg; 60 min post: −2.7 ± 2.0 mmHg; all P < 0.05), neither resting MCAv nor the cerebrovascular response to hypotension differed between pre- and post-exercise periods (P > 0.05). These data indicate that cerebrovascular regulation remains intact following a moderate bout of aerobic exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45–52

    Article  PubMed  CAS  Google Scholar 

  • Aaslid R, Blaha M, Sviri G, Douville CM, Newell DW (2007) Asymmetric dynamic cerebral autoregulatory response to cyclic stimuli. Stroke 38:1465–1469

    Article  PubMed  Google Scholar 

  • Ainslie P (2009) Have a safe night: intimate protection against cerebral hyperperfusion during REM sleep. J Appl Physiol 106:1031–1033

    Article  PubMed  CAS  Google Scholar 

  • Ainslie P, Duffin J (2009) Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. AJP: regulatory. Integr Comp Physiol 296:R1473–R1495

    Article  CAS  Google Scholar 

  • Ainslie P, Tzeng Y (2010) On the regulation of the blood supply to the brain: old age concepts and new age ideas. J Appl Physiol 108:1447–1449

    Article  PubMed  CAS  Google Scholar 

  • Aries MJH, Elting JW, De Keyser J, Kremer BPH, Vroomen PCAJ (2010) Cerebral autoregulation in stroke: a review of transcranial Doppler studies. Stroke 41:2697–2704

    Article  PubMed  Google Scholar 

  • Bailey DM, Evans KA, McEneny J, Young IS, Hullin DA, James PE, Ogoh S, Ainslie PN, Lucchesi C, Rockenbauer A, Culcasi M, Pietri S (2011) Exercise-induced oxidative–nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood–brain barrier leakage. Exp Physiol 96(11):1196–1207

    PubMed  CAS  Google Scholar 

  • Chan GSH, Ainslie PN, Willie CK, Taylor CE, Atkinson G, Jones H, Lovell NH, Tzeng YC (2011) Contribution of arterial Windkessel in low-frequency cerebral hemodynamics during transient changes in blood pressure. J Appl Physiol 110:917–925

    Article  PubMed  Google Scholar 

  • Charkoudian N, Halliwill JR, Morgan BJ, Eisenach JH, Joyner MJ (2003) Influences of hydration on post-exercise cardiovascular control in humans. J Physiol (Lond) 552:635–644

    Article  CAS  Google Scholar 

  • Charkoudian N, Eisenach JH, Joyner MJ, Roberts SK, Wick DE (2005a) Interactions of plasma osmolality with arterial and central venous pressures in control of sympathetic activity and heart rate in humans. Am J Physiol Heart Circ Physiol 289:H2456–H2460

    Article  PubMed  CAS  Google Scholar 

  • Charkoudian N, Joyner MJ, Johnson CP, Eisenach JH, Dietz NM, Wallin BG (2005b) Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol (Lond) 568:315–321

    Article  CAS  Google Scholar 

  • Claassen JAHR, Zhang R (2011) Cerebral autoregulation in Alzheimer’s disease. J Cerebr Blood Flow Met 31:1572–1577

    Article  CAS  Google Scholar 

  • Dawson EA, Whyte GP, Black MA, Jones H, Hopkins N, Oxborough D, Gaze D, Shave RE, Wilson M, George KP, Green DJ (2008) Changes in vascular and cardiac function after prolonged strenuous exercise in humans. J Appl Physiol (Bethesda, Md: 1985) 105:1562–1568

    Google Scholar 

  • Gratze G, Mayer H, Luft FC, Skrabal F (2008a) Determinants of fast marathon performance: low basal sympathetic drive, enhanced postcompetition vasodilatation and preserved cardiac performance after competition. Br J Sports Med 42:882–888

    Article  PubMed  CAS  Google Scholar 

  • Gratze G, Mayer H, Skrabal F (2008b) Sympathetic reserve, serum potassium, and orthostatic intolerance after endurance exercise and implications for neurocardiogenic syncope. Eur Heart J 29:1531–1541

    Article  PubMed  CAS  Google Scholar 

  • Green DJ, Spence A, Halliwill JR, Cable T, Thijssen D (2010) Exercise and vascular adaptation in asymptomatic humans. Exp Physiol

  • Halliwill JR (2001) Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev 29:65–70

    Article  PubMed  CAS  Google Scholar 

  • Halliwill JR, Taylor JA, Eckberg DL (1996a) Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol (Lond) 495:279–288

    CAS  Google Scholar 

  • Halliwill JR, Taylor JA, Hartwig TD, Eckberg DL (1996b) Augmented baroreflex heart rate gain after moderate-intensity, dynamic exercise. Am J Physiol 270:R420–R426

    PubMed  CAS  Google Scholar 

  • Halliwill JR, Dinenno FA, Dietz NM (2003) Alpha-adrenergic vascular responsiveness during postexercise hypotension in humans. J Physiol 550:279–286

    Article  PubMed  CAS  Google Scholar 

  • Immink RV, Secher NH, Roos CM, Pott F, Madsen PL, Van Lieshout JJ (2006) The postural reduction in middle cerebral artery blood velocity is not explained by PaCO2. Eur J Appl Physiol 96:609–614

    Article  PubMed  CAS  Google Scholar 

  • Joshi S, Young WL, Pile-Spellman J, Fogarty-Mack P, Sciacca RR, Hacein-Bey L, Duong H, Vulliemoz Y, Ostapkovich N, Jackson T (1997) Intra-arterial nitrovasodilators do not increase cerebral blood flow in angiographically normal territories of arteriovenous malformation patients. Stroke 28:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Kulics JM, Collins HL, DiCarlo SE (1999) Postexercise hypotension is mediated by reductions in sympathetic nerve activity. Am j physiol 276:H27–H32

    PubMed  CAS  Google Scholar 

  • Lavi S (2003) Role of nitric oxide in the regulation of cerebral blood flow in humans: chemoregulation versus mechanoregulation. Circulation 107:1901–1905

    Article  PubMed  Google Scholar 

  • Lucas SJ, Tzeng YC, Galvin SD, Thomas KN, Ogoh S, Ainslie PN (2010) Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension 55:698–705

    Article  PubMed  CAS  Google Scholar 

  • Murrell C, Wilson L, Cotter JD, Lucas S, Ogoh S, George K, Ainslie PN (2007) Alterations in autonomic function and cerebral hemodynamics to orthostatic challenge following a mountain marathon. J Appl Physiol 103:88–96

    Article  PubMed  Google Scholar 

  • Murrell C, Cotter J, George K, Shave R, Wilson L, Thomas K, Williams M, Lowe T, Ainslie P (2009) Influence of age on syncope following prolonged exercise; differential responses but similar orthostatic intolerance. J Physiol (Lond) 1–11

  • Murrell CJ, Cotter JD, George K, Shave R, Wilson L, Thomas K, Williams MJA, Ainslie PN (2010) Syncope is unrelated to supine and postural hypotension following prolonged exercise. Eur J Appl Physiol 111:469–476

    Article  PubMed  Google Scholar 

  • Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107:1370–1380

    Article  PubMed  CAS  Google Scholar 

  • Ogoh S, Dalsgaard MK, Yoshiga CC, Dawson EA, Keller DM, Raven PB, Secher NH (2005) Dynamic cerebral autoregulation during exhaustive exercise in humans. Am J Physiol Heart Circ Physiol 288:H1461–H1467

    Article  PubMed  CAS  Google Scholar 

  • Ogoh S, Fisher JP, Purkayastha S, Dawson EA, Fadel PJ, White MJ, Zhang R, Secher NH, Raven PB (2007) Increases in central blood volume modulate carotid baroreflex resetting during dynamic exercise in humans. J Appl Physiol (Bethesda, Md : 1985) 102:713–721

    Google Scholar 

  • Ogoh S, Brothers R, Eubank W, Raven P (2008) Autonomic neural control of the cerebral vasculature: acute hypotension. Stroke 39:1979–1987

    Article  PubMed  Google Scholar 

  • Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192

    PubMed  CAS  Google Scholar 

  • Piepoli M, Coats AJ, Adamopoulos S, Bernardi L, Feng YH, Conway J, Sleight P (1993) Persistent peripheral vasodilation and sympathetic activity in hypotension after maximal exercise. J Appl Physiol 75:1807–1814

    PubMed  CAS  Google Scholar 

  • Rapela CE, Green HD, Denison ABJ (1967) Baroreceptor reflexes and autorregulation of cerebral blood flow in the dog. Circ Res 21:559–568

    Article  PubMed  CAS  Google Scholar 

  • Robinson TG, Dawson SL, Eames PJ, Panerai RB, Potter JF (2003) Cardiac baroreceptor sensitivity predicts long-term outcome after acute ischemic stroke. Stroke 34:705–712

    Article  PubMed  Google Scholar 

  • Rudas L, Crossman AA, Morillo CA, Halliwill JR, Tahvanainen KU, Kuusela TA, Eckberg DL (1999) Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine. Am J Physiol 276:H1691–H1698

    PubMed  CAS  Google Scholar 

  • Scott JM, Esch BTA, Lusina S-JC, McKenzie DC, Koehle MS, Sheel AW, Warburton DER (2008). Post-exercise hypotension and cardiovascular responses to moderate orthostatic stress in endurance-trained males. Applied physiology, nutrition, and metabolism = Physiologie appliquée, nutrition et métabolisme 33:246–253

    Google Scholar 

  • Smith JC, Paulson ES, Cook DB, Verber MD, Tian Q (2010) Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: implications for fMRI. J Neurosci Methods 191:258–262

    Article  PubMed  Google Scholar 

  • Somers VK, Conway J, LeWinter M, Sleight P (1985) The role of baroreflex sensitivity in post-exercise hypotension. J Hypertens Suppl 3:S129–S130

    PubMed  CAS  Google Scholar 

  • Subudhi AW, Panerai RB, Roach RC (2009). Acute hypoxia impairs dynamic cerebral autoregulation: results from two independent techniques. J Appl Physiol (Bethesda, Md: 1985) 107:1165–1171

    Google Scholar 

  • Subudhi AW, Panerai RB, Roach RC (2010) Effects of hypobaric hypoxia on cerebral autoregulation. Stroke 41:641–646

    Article  PubMed  Google Scholar 

  • Subudhi AW, Dimmen AC, Julian CG, Wilson MJ, Panerai RB, Roach RC (2011) Effects of acetazolamide and dexamethasone on cerebral hemodynamics in hypoxia. J Appl Physiol (Bethesda, Md: 1985) 110(5):1219–1225

    Google Scholar 

  • Swain DP, Abernathy KS, Smith CS, Lee SJ, Bunn SA (1994) Target heart rates for the development of cardiorespiratory fitness. Med Sci Sports Exerc 26:112–116

    PubMed  CAS  Google Scholar 

  • Taylor CE, Atkinson G, Willie CK, Jones H, Ainslie PN, Tzeng YC (2011) Diurnal variation in the mechanical and neural components of the baroreflex. Hypertension 58:51–56

    Article  PubMed  CAS  Google Scholar 

  • Tiecks FP, Lam AM, Aaslid R, Newell DW (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26:1014–1019

    Article  PubMed  CAS  Google Scholar 

  • Tzeng YC, Sin PYW, Lucas SJE, Ainslie PN (2009) Respiratory modulation of cardiovagal baroreflex sensitivity. J Appl Physiol 107:718–724

    Article  PubMed  CAS  Google Scholar 

  • Tzeng Y-C, Willie CK, Atkinson G, Lucas SJE, Wong A, Ainslie PN (2010a) Cerebrovascular regulation during transient hypotension and hypertension in humans. Hypertension 1–7

  • Tzeng YC, Lucas SJ, Atkinson G, Willie CK, Ainslie PN (2010b) Fundamental relationships between arterial baroreflex sensitivity and dynamic cerebral autoregulation in humans. J Appl Physiol 108:1162–1168

    Article  PubMed  Google Scholar 

  • Tzeng YC, Willie CK, Atkinson G, Lucas SJ, Wong A, Ainslie PN (2010c) Cerebrovascular regulation during transient hypotension and hypertension in humans. Hypertension 56:268–273

    Article  PubMed  CAS  Google Scholar 

  • Tzeng YC, Chan GS, Willie CK, Ainslie PN (2011) Determinants of human cerebral pressure-flow velocity relationships: new insights from vascular modeling and Ca2 + blockade. J Physiol 589:3263–3274

    Article  PubMed  CAS  Google Scholar 

  • Warburton DER, Charlesworth S, Ivey A, Nettlefold L, Bredin SSD (2010) A systematic review of the evidence for Canada&apos;s Physical Activity Guidelines for Adults. Int J Behav Nutr Phys Act 7:39

    Article  PubMed  Google Scholar 

  • Willie CK, Ainslie PN, Taylor CE, Jones H, Sin PYW, Tzeng YC (2011) Neuromechanical features of the cardiac baroreflex after exercise. Hypertension 57:927–933

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Behbehani K, Levine BD (2009) Dynamic pressure–flow relationship of the cerebral circulation during acute increase in arterial pressure. J Physiol (Lond) 587:2567–2577

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Willie.

Additional information

Communicated by Dag Linnarsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willie, C.K., Ainslie, P.N., Taylor, C.E. et al. Maintained cerebrovascular function during post-exercise hypotension. Eur J Appl Physiol 113, 1597–1604 (2013). https://doi.org/10.1007/s00421-012-2578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2578-3

Keywords

Navigation