Skip to main content
Log in

Sparse Spatial Sampling for the Computation of Motion in Multiple Stages

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The avian retino-tecto-rotundal pathway plays a central role in motion analysis and features complex connectivity. Yet, the relation between the pathway’s structural arrangement and motion computation has remained elusive. For an important type of tectal wide-field neuron, the stratum griseum centrale type I (SGC-I) neuron, we quantified its structure and found a spatially sparse but extensive sampling of the retinal projection. A computational investigation revealed that these structural properties enhance the neuron’s sensitivity to change, a behaviorally important stimulus attribute, while preserving information about the stimulus location in the SGC-I population activity. Furthermore, the SGC-I neurons project with an interdigitating topography to the nucleus rotundus, where the direction of motion is computed. We showed that, for accurate direction-of-motion estimation, the interdigitating projection of tectal wide-field neurons requires a two-stage rotundal algorithm, where the second rotundal stage estimates the direction of motion from the change in the relative stimulus position represented in the first stage

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braitenberg V, Schuez A (1991). Anatomy of the cortex. Springer, Berlin Heidelberg, New York

    Google Scholar 

  • Benowitz LI, Karten HJ (1976). Organization of the tecto-fugal pathway in the pigeon: a retrograde transport study. J Comp Neurol 167:503–520

    Article  PubMed  CAS  Google Scholar 

  • Chaves LM, Hodos W, Güntürkün O (1993). Color-reversal learning: effects after lesions of thalamic visual structures in pigeons. Vis Neurosci 10:1099–1107

    PubMed  CAS  Google Scholar 

  • Chklovskii DB (2004). Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43:609–617

    Article  PubMed  CAS  Google Scholar 

  • Dayan P, Abbott LF (2001). Theoretical Neuroscience. MIT, Cambridge

    Google Scholar 

  • Deng C, Rogers LJ (1998). Organization of the tecto-rotundal and SP/IPS rotundal projection in the chick. J Comp Neurol 394:171–185

    Article  PubMed  CAS  Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns. Arnold, London

    Google Scholar 

  • Eurich CW, Wilke SD (2000) Multidimensional encoding strategy of spiking neurons. Neural Comput 12:1519–1529

    Article  PubMed  CAS  Google Scholar 

  • Frost BJ, Nakayama K (1983) Single visual neurons code opposing motion independent of direction. Science 220:744–745

    Article  PubMed  CAS  Google Scholar 

  • Frost BJ (1993) Subcortical analysis of visual motion: relative motion, figure-ground discrimination and self-induced optic flow. In: Miles FA, Wallman J (eds). Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 159–175

    Google Scholar 

  • Hardy O, Audina E, Jassik-Gerschenfeld D (1987) Electrophysiological properties of neurons recorded intracellularly in slices of the pigeon optic tectum. Neuroscience 23:305–318

    Article  PubMed  CAS  Google Scholar 

  • Hellmann B, Güntürkün O (2001) Structural organization of parallel information processing within the tectofugal visual system of the pigeon. J Comp Neurol 429:94–112

    Article  PubMed  CAS  Google Scholar 

  • Holmgren C, Harkany T, Svennenfors B, Zilberet Y (2003) Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol 551:139–153

    Article  PubMed  CAS  Google Scholar 

  • Humphrey NK (1968) Responses to visual stimuli of units in the superior colliculus of rats and monkeys. Exp Neurol 20:312–340

    Article  PubMed  CAS  Google Scholar 

  • Hunt SP, Künzle H (1976) Observations on the projections and intrinsic organization of the pigeon optic tectum: an autoradiographic study based on anterograde and retrograde, axonal and dendritic flow. J Comp Neurol 170:153–172

    Article  PubMed  CAS  Google Scholar 

  • Isa T, Endo T, Saito Y (1998) The visuo-motor pathway in the local circuit of the rat superior colliculus. J Neurosci 18:8496–8504

    PubMed  CAS  Google Scholar 

  • Jan YN, Jan LY (2003) The control of dendrite development. Neuron 40:229–242

    Article  PubMed  CAS  Google Scholar 

  • Kanaseki T, Sprague JM (1974) Anatomical organization of pretectal nuclei and tectal laminae in the cat. J Comp Neurol 158:319–338

    Article  PubMed  CAS  Google Scholar 

  • Karten HJ, Cox K, Mpodozis J (1997) Two distinct populations of tectal neurons have unique connections within the retino-tecto-rotundal pathway of the pigeon (Columba livia). J Comp Neurol 387:449–465

    Article  PubMed  CAS  Google Scholar 

  • Langer TP, Lund RD (1974) The upper layers of the superior colliculus of the rat: a Golgi study. J Comp Neurol 158:418–435

    Article  PubMed  CAS  Google Scholar 

  • Laverghetta AV, Shimizu T (1999) Visual discrimination in the pigeon (Columba livia): effects of selective lesions of the nucleus rotundus. Neuroreport 10:981–985

    Article  PubMed  CAS  Google Scholar 

  • Lee P, Hall WC (1995) Interlaminar connections of the superior colliculus in the tree shrew. II: projections from the superficial gray to the optic layer. Vis Neurosci 12:573–588

    Article  PubMed  CAS  Google Scholar 

  • Letelier JC, Marin G, Karten H, Fredes F, Sentis E,Weber P,Mpodozis J (2002) Tectal ganglion cells in the pigeon (columba livia): micro-structure of their motion sensitive receptive fields. SocNeurosci Abstr 28:761.17

    Google Scholar 

  • Luksch H, Cox K, Karten HJ (1998) Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the tectofugal pathway. J Comp Neurol 396:399–414

    Article  PubMed  CAS  Google Scholar 

  • Luksch H, Karten HJ, Kleinfeld D, Wessel R (2001) Chattering and differential signal processing in identified motion sensitive neurons of parallel visual pathways in chick tectum. J Neurosci 21:6440–6446

    PubMed  CAS  Google Scholar 

  • Luksch H, Khanbabaie R, Wessel R (2004) Synaptic dynamics mediate sensitivity to motion independent of stimulus details. Nat Neurosci 7:380–388

    Article  PubMed  CAS  Google Scholar 

  • Major DE, Luksch H, Karten HJ (2000) Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the mammalian tectum. J Comp Neurol 423:243–260

    Article  PubMed  CAS  Google Scholar 

  • Marin G, Letelier JC, Henny P, Sentis E, Farfan G, Fredes F, Pohl N, Karten H, Mpodozis J (2003) Spatial organization of the pigeon tecto-rotundal pathway: An interdigitating topographic arrangement. J Comp Neurol 458:361–380

    Article  PubMed  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurons in the developing rat neocortex. J Physiol 500:409–440

    PubMed  CAS  Google Scholar 

  • Mooney RD, Nikoletseas MM, Ruiz SA, Rhoades RW (1988) Receptive-field properties and morphological characteristics of the superior collicular neurons that project to the lateral posterior and dorsal lateral geniculate nuclei in the hamster. J Neurophysiol 59:1333–1351

    PubMed  CAS  Google Scholar 

  • Ngo TD, Davies DC, Egedi GY, Tömböl TA (1994) Phaseolus lectin anterograde tracing study of the tectorotundal projections in the domestic chick. J Anat 184:129–136

    PubMed  Google Scholar 

  • Ogawa T, Takimori T, Takahashi Y (1985) Projection of morphologically identified superior colliculus neurons to the lateral posterior nucleus in the cat. Vis Res 25:329–337

    Article  PubMed  CAS  Google Scholar 

  • Poggio T, Bizzi E (2004) Generalization in vision and motor control. Nature 431:768–774

    Article  PubMed  CAS  Google Scholar 

  • Pouget A, Deneve S, Ducom JC, Latham PE (1999) Narrow versus wide tuning curves: What’s best for a population code. Neural Comput 11:85–90

    Article  PubMed  CAS  Google Scholar 

  • Pouget A, Dayan P, Zemel RS (2003) Inference and computation with population codes. Annu Rev Neurosci 26:381–410

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1899) Texture of the nervous system of man and the vertebrates, vol 1. Springer, Wien

    Google Scholar 

  • Revzin AM (1981). Functional localization in the nucleus rotundus. In: Granda AM, Maxwell JH (eds). Neural mechanisms of behavior in the pigeon. Plenum Press, New York, pp 165–175

    Google Scholar 

  • Sanger TD (2003) Neural population codes. Curr Opin Neurobiol 13:238–249

    Article  PubMed  CAS  Google Scholar 

  • Series P, Latham PE, Pouget A (2004) Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations. Nat Neurosci 7:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. MIT, Cambridge

    Google Scholar 

  • Stuart G, Spruston N, Haeusser M (1999) Dendrites. Oxford University Press, Oxford

    Google Scholar 

  • Sun H, Frost BJ (1998) Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat Neurosci 1:296–302

    Article  PubMed  CAS  Google Scholar 

  • Tömböl T, Németh A (1999) Direct connections between dendritic terminals of tectal ganglion cells and glutamate-positive terminals of presumed optic fibers in layers 4–5 of the optic tectum of Gallus domesticus. Neurobiology (Bp) 7:45–67

    Google Scholar 

  • Troje NF, Frost BJ (1998) The physiological fine structure of motion sensitive neurons in the pigeon’s tectum opticum. Soc Neurosci Abstr 24:642.9

    Google Scholar 

  • Wang Y, Frost BJ (1992) Time to collision is signaled by neurons in the nucleus rotundus of pigeons. Nature 356:236–238

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Sejnowski TJ (1999) Neuronal tuning: to sharpen or broaden? Neural Comput 11:75–84

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Wessel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahani, A.S., Khanbabaie, R., Luksch, H. et al. Sparse Spatial Sampling for the Computation of Motion in Multiple Stages. Biol Cybern 94, 276–287 (2006). https://doi.org/10.1007/s00422-005-0046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0046-4

Keywords

Navigation