Skip to main content

Advertisement

Log in

A Quantitative Theory of Neural Computation

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We show how a general quantitative theory of neural computation can be used to explain two recent experimental findings in neuroscience. The first of these findings is that in human medial temporal lobe there exist neurons that correspond to identifiable concepts, such as a particular actress. Further, even when such concepts are preselected by the experimenter, such neurons can be found with paradoxical ease, after examining relatively few neurons. We offer a quantitative computational explanation of this phenomenon, where apparently none existed before. Second, for the locust olfactory system estimates of the four parameters of neuron numbers, synapse numbers, synapse strengths, and the numbers of neurons that represent an odor are now available. We show here that these numbers are related as predicted by the general theory. More generally, we identify two useful regimes for neural computation with distinct ranges of these quantitative parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, Cambridge

    Google Scholar 

  • Ali AB, Deuchars J, Pawelzik H, Thomson AM (1998) CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J Physiol 507:201

    Article  PubMed  CAS  Google Scholar 

  • Barlow HB (1972) Single units and sensation: a neuron doctrine for perceptual psychology. Perception 1:371

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg V (1978) In: Heim R, Palm G (eds) Theoretical approaches to complex systems. Lecture notes in biomathematics, vol. 21. Springer, Berlin Heidelberg New York, pp 171–188

  • Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Elston GN, Tweedale R, Rosa MGP (1999) Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes. Proc R Soc Lond B 266:1367

    Article  CAS  Google Scholar 

  • Feldman JA (1982) Dynamic connections in neural networks. Biol Cybern 46:27

    Article  PubMed  CAS  Google Scholar 

  • Feldman JA, Ballard DH (1982) Connectionist models and their properties. Cog Sci 6:205

    Article  Google Scholar 

  • Graham B, Willshaw D (1997) Capacity and information efficiency of the associative net. Network: Comput Neural Syst 8:35

    Article  Google Scholar 

  • Griffith JS (1963) On the stability of brain-like structures. Biophys J 3:299

    Article  PubMed  CAS  Google Scholar 

  • Gross CG, Bender DB, Rocha-Miranda CE (1969) Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166:1303

    Article  PubMed  CAS  Google Scholar 

  • Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35:96

    PubMed  CAS  Google Scholar 

  • Jortner RA, Farivar SS, Laurent G (2006) Dense connectivity for sparse coding in the locust olfactory system. Manuscript

  • Kanerva P (1988) Sparse distributed memory. MIT, Cambridge

    Google Scholar 

  • Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy: A mechanism to generate infinite synaptic input diversity from a homogenous population of neurons without changing absolute synaptic efficacies. J Physiol (Paris) 90:229

    Article  CAS  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437

    PubMed  CAS  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. J Brain Res 34:171

    Article  CAS  Google Scholar 

  • O’Keefe J, Burgess N, Donnett JG, Jeffery KJ, Maguire EA (1998) TI Place cells, navigational accuracy, and the human hippocampus. Philos Trans R Soc Lond B 353:1333

    Article  CAS  Google Scholar 

  • Page M (2000) Connectionist modelling in psychology: a localist manifesto. Behav Brain Sci 23:4443

    Google Scholar 

  • Palm G (1982) Neural assemblies: an alternative approach to artifcial intelligence. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107

    Article  PubMed  CAS  Google Scholar 

  • Song S, Sjostrom PS, Reigl M, Nelson S, Chklovskii DM (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:3, 507

    Google Scholar 

  • Thomson AM, Deuchars J, West DC (1993) Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. J Neurophysiol 70:2354

    PubMed  CAS  Google Scholar 

  • Valiant LG (1994) Circuits of the mind. Oxford University Press, New York

    Google Scholar 

  • Valiant LG (2005) Memorization and association on a realistic neural model. Neural Comput 17:3, 527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie G. Valiant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiant, L.G. A Quantitative Theory of Neural Computation. Biol Cybern 95, 205–211 (2006). https://doi.org/10.1007/s00422-006-0079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0079-3

Keywords

Navigation