Skip to main content

Advertisement

Log in

Bipedal locomotion: toward unified concepts in robotics and neuroscience

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This review is the result of a joint reflection carried out by researchers in the fields of robotics and automatic control on the one hand and neuroscience on the other, both trying to answer the same question: what are the functional bases of bipedal locomotion and how can they be controlled? The originality of this work is to synthesize the two approaches in order to take advantage of the knowledge concerning the adaptability and reactivity performances of humans and of the rich tools and formal concepts available in biped robotics. Indeed, we claim that the theoretical framework of robotics can enhance our understanding of human postural control by formally expressing the experimental concepts used in neuroscience. Conversely, biological knowledge of human posture and gait can inspire biped robot design and control. Therefore, both neuroscientists and roboticists should find useful information in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbs JH, Cole KJ (1987) Neural mechanisms of motor equivalence and goal achievement. In: Wise S.P. (ed) Higher brain functions. Recent explorations of the brains’s emergent properties. Wiley, New York, pp 15–43

    Google Scholar 

  • Allgower F, Badgwell TA, Qion JS, Rawlings JB, Wright SJ (1999) Nonlinear predictive control and moving horizon estimation. an introduction overview. In: Proceedings of the European Control Conference (ECC), Karlsruhe, Germany, pp 392–449

  • Asano F, Luo Z, Yamakita M (2004) Some extensions of passive walking formula to active biped robots. In: IEEE International Conference on Robotics & Automation. New Orleans, April 2004 pp 3797–3802

  • Assaiante C, Amblard B (1993) Ontogenesis of head stabilization in space during locomotion in children: influence of visual cues. Exp Brain Res 93:499–515

    Article  PubMed  CAS  Google Scholar 

  • Assaiante C, Amblard B (1995) An ontogenetic model for the sensorimotor organization of balance control in humans. Human Mov Sci 14:13–43

    Article  Google Scholar 

  • Assaiante C, Thomachot B, Aurenty R (1993) Hip stabilization and lateral balance control in toddlers during the first four months of autonomous walking. NeuroReport 4(7):875–878

    Article  PubMed  CAS  Google Scholar 

  • Assaiante C, Thomachot B, Aurenty R, Amblard B (1998) Organization of lateral balance control in toddlers during the first year of autonomous walking. J Motor Behav 30(2):114–129

    Article  CAS  Google Scholar 

  • Aubin JP (1991) Viability theory. Birkhäuser

  • Azevedo C, Amblard B, Espiau B, Assaiante C (2004) A synthesis of bipedal locomotion in human and robots. Technical Report 5450, INRIA, December 2004

  • Azevedo C, Andreff N, Arias S (2004) Bipedal walking from gait design to experimental analysis. Mechatronics 14(6):639–665

    Article  Google Scholar 

  • Azevedo C, Héliot R (2005) Rehabilitation of functional posture and walking: coordination of healthy and impaired limbs. J Automatic Control 15-Suppl:11–15

    Google Scholar 

  • Azevedo C, Poignet P, Espiau B (2004) Artificial locomotion control: from human to robots. Robot Auton Syst 47(4):203–223

    Article  Google Scholar 

  • Bernstein NA (1967) The coordination and regulation of movement. Pergamon Press, New York

    Google Scholar 

  • Berthoz A (1991) Reference frames for the perception and control of movement. In: Paillard J (ed) Brain and space. Oxford University Press, Oxford

    Google Scholar 

  • Bianchi L, Angelini D, Lacquaniti F (1998) Individual characteristics of human walking mechanics. Pflugers Arch. 436:343–356

    Article  PubMed  CAS  Google Scholar 

  • Blickhan R (1989) The spring-mass model for running and hopping. J Biomech 22:1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Bourgeot J-M, Cislo N, Espiau B (2002) Path-planning and tracking in a 3D complex environment for an anthropomorphic biped robot. In: Proceedings of the 2002 IEEE international conference on intelligent robots and systems, vol 3, EPFL, Lausanne, Suisse, October 2002, pp 2509–2514

  • Brooks VB (1986) The neural basis of motor control. Oxford University Press, Oxford

    Google Scholar 

  • Cavagna GA, Franzetti P, Fuchimoto T (1983) The mechanics of walking in children. J Physiol 343:323–339

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:243–261

    Google Scholar 

  • Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol 262:639–657

    PubMed  CAS  Google Scholar 

  • Chareyron S, Wieber PB (2005a) Complete stability analysis of a control law for walking robots with non-permanent contacts. In: CLAWAR 2005 8th international conference on climbing and walking robots, London, September 2005a

  • Chareyron S, Wieber PB (2005b) Position and force control of nonsmooth lagrangian dynamical systems without friction. In: Lothar Thiele Manfred Morari, (ed) Lecture notes in Computer Science, vol 3414. Springer-Verlag GmbH, Berlin Heidelberg New York, p 215.

  • Chaumette F (1998) Potential problems of stability and convergence in image-based and position-based visual servoing. In: Kriegman D, Hager G, Morse AS (eds) The Confluence of vision and control, LNCIS Series, vol. 237. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Chessé S, Bessonnet G (2001) Optimal dynamics of constrained multibody systems. Application to bipedal walking system synthesis. In: IEEE International Conference on Robotics & Automation, New Orleans

  • Chevallereau C, Grizzle JW, Moog CH (2004) Nonlinear control of mechanical systems with one degree of actuation. In: IEEE International Conference on Robotics & Automation, New Orleans

  • Clément G, Gurfinkel VS, Lestienne F, Lipshits MI, Popov KE (1984) Adaptation of postural control to weightlessness. Exp Brain Res 57:61–72

    Article  PubMed  Google Scholar 

  • Collins SH, Wisse M, Ruina A (2001) A three-dimensional passive dynamic walking robot with two legs and knees. Int J Robot Res 20(7):607–615

    Article  Google Scholar 

  • Crenna P, Frigo C, Massion J, Pedotti A (1987) Forward and backward axial synergies in man. Exp Brain Res 65:538–548

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modelling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431

    Article  PubMed  Google Scholar 

  • Dietz V (2003) Spinal cord pattern generators for locomotion. Clin Neurophysiol 114:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Donelan JM, Kram R, Kuo AD (2001) Mechanical and metabolic determinants of the preferred step width in human walking. Proc R Soc Lond B Biol Sci 268:1985–1992

    Article  CAS  Google Scholar 

  • Droulez J, Berthoz A (1986) Servo-controlled (conservative) versus topological (projective) mode of sensory motor control. In: Brandt T (ed) Disoder and Posture and gait Elsevier Amsterdam, pp. 83–97

  • Duysens J, Tax AAM, Nawijn S, Berger W, Prokop T, Altenmuller E (1995) Gating of sensation and evoked potentials following foot stimulation during human gait. Exp Brain Res 105(3):423–431

    PubMed  CAS  Google Scholar 

  • Duysens J, Van de Crommert HWAA (1998). Neural control of locomotion; the central pattern generator from cats to humans. Gait Posture 7:131–141

    Article  PubMed  Google Scholar 

  • Endo G, Morimoto J, Nakanishi J, Cheng G (2004) An empirical exploration of a neural control oscillator for biped locomotion control. In: IEEE international conference on robotics & automation, New Orleans, pp. 3036–3042

  • Espiau B, Chaumette F, Rives P (1992) A new approach to visual servoing in robotics. In: IEEE Trans Robot Autom 8(3):313–326

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17(4):1519–1528

    PubMed  CAS  Google Scholar 

  • Forssberg H, Johnels B, Steg G (1984) Is parkinsonian gait caused by a regression to an immature walking pattern? Adv Neurol 40:375–379

    PubMed  CAS  Google Scholar 

  • Garcia CE, Prett DM, Morari M (1989) Model predictive control: theory and practice – a survey, vol 25. Automatica

  • Gatev P, Thomas T, Kepple S, Hallett M (1999) Feedforward ankle strategy of balance during quiet stance in adults. J Physiol (Lond) 514:915–928

    Article  CAS  Google Scholar 

  • Goswami A, Thuilot B, Espiau B (1998) A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int J Robot Res 17(12):1282–1301

    Google Scholar 

  • Gottschall JS, Kram R (2003) Energy cost and muscular activity required for propulsion during walking. J Appl Physiol 94(5):1766–1772

    PubMed  Google Scholar 

  • Gresty MA, Bronstein AM (1992) Visually controlled spatial stabilisation of the human head: compensation for the eye’s limited ability to roll. Neurosci Lett 140:63–66

    Article  PubMed  CAS  Google Scholar 

  • Grillner S (1986) Interaction between sensory signals and the central networks controlling locomotion in lamprey, dogfish and cat. In: Grillner S, Stein PSG, Stuart DG, Forssberg F, Herman RM (eds) Wenner Gren international symposium seriesWenner Gren international symposium series vol 45. Macmillan, London

    Google Scholar 

  • Gurfinkel VS, Levick YS (1991) Perceptual and automatic aspects of the postural body scheme. In: Paillard J (ed) Brain and space, chap 10. Oxford University Press, Oxford

    Google Scholar 

  • Haruno M, Wolpert DM, Kawato M (2001) Mosaic model for sensorimotor learning and control. Neural Comput

  • Haruno M, Wolpert DM, Kawato M (2003) Hierarchical mosaic for movement generation. Int Congress Ser 1250, 575– 590

    Article  Google Scholar 

  • Héliot R, Azevedo C, Espiau B, David D (2005) Early detection of postural modifications and motion monitoring using micro attitude sensors. In: Adaptive motion in animals and machines AMAM conference, Ilmenau, Germany, October 2005

  • Herr H, Langman N (1997) Optimization of human-powered elastic mechanisms for endurance amplification. J Int Soc Struct Multidisciplin Optimiz 13:65–67

    Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants in muscle. Proc R Soc London Ser B 126:136–195

    Article  Google Scholar 

  • Horak FB, MacPherson JM (1996) Postural orientation and equilibrium. In: Rowell LB, Shepherd JT (eds) Handbook of physiology. Sation 12, Excercise; regulation and integration of multiple systems. Oxford University Press, New York, pp 255– 292

    Google Scholar 

  • Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configurations. J Physiol (Lond) 55:1369–1381

    CAS  Google Scholar 

  • Hu J, Pratt J, Chew C, Herr H, Pratt G (1999) Virtual model based adaptive dynamic control of a biped walking robot. Int J Artif Intell Tools 8:337–348

    Article  Google Scholar 

  • Hurmuzlu Y, Génot F, Brogliato B (2001) Modelling, stability and control of biped robots – a general framework. Technical Report 4290, INRIA Research Report

  • Huxley AF (1957) Muscle structure and theories of contraction. Progress Biophys Biophys Chem 7:255–318

    CAS  Google Scholar 

  • Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M (2003) Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA 100:5461–5466

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (1988) The neural and behavioral organization of goal-directed movements. Clarendon press, Oxford

    Google Scholar 

  • Kajita S, Yokoi K, Saigo M, Tanie K (2001) Balancing a humanoid robot using backdrive concerned torque control and direct angular momentum feedback. In: IEEE International Conference on Robotics & Automation, Seoul, Korea, May 2001

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Posit Neurobiol 9(6):718–727

    Article  CAS  Google Scholar 

  • Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern, 57:169–185

    Article  CAS  Google Scholar 

  • Kim J, Oh J (2004) Walking control of the humanoid control platform khr-1 based on torque feedback control. In: IEEE international conference on robotics & automation, New Orleans, April 2004, pp 623–628

  • Krishnamoorthy V (2003) Muscle synergies during standing. PhD Thesis, College of health and Human Development. Pennsylvania State University

  • Lacquaniti F, Ivanenko YP, Zago M (2002) Kinematic control of walking. Arch Ital Biol 140:263–272

    PubMed  CAS  Google Scholar 

  • Lestienne F, Gurfinkel VS (1988) Postural control in weightlessness: a dual process underlying adaptation to an unusual environment. TINS 11:359–363

    PubMed  CAS  Google Scholar 

  • Lydoire F, Poignet P (2003) Nonlinear predictive control using constraint satisfaction. In: 2nd International Workshop on Global Constrained Optimization and Constraint Satisfaction (COCOS)

  • Lydoire F, Poignet P, Azevedo C, Espiau B (2002) Three-dimensional paramaterized gaits for biped walking. In: Proceedings of the 5th international conference on climbing and walking Robots (CLAWAR), Paris, pp 749–757

  • Massion J (1992) Movement, posture and equilibrium: Interaction and coordination. Prog in Neurobio 38:35–56

    Article  CAS  Google Scholar 

  • Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern 52:345– 353

    Article  Google Scholar 

  • McGeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82

    Google Scholar 

  • McMahon T, Cheng G (1990) The mechanism of running: how does stiffness couple with speed? J Biomech 23:657

    Article  Google Scholar 

  • Mittelstaedt H, Fricke E (1988) The relative effect of saccular and somatosensory information on spatial perception and control. Adv Oto-Rhino-Laryngol 42:24–30

    CAS  Google Scholar 

  • Nadeau S, Amblard B, Mesure S, Bourbonnais D (2003) Head and trunk stabilization strategies during forward and backward walking in healthy adults. Gait Posture 18(3):134–142

    Article  PubMed  Google Scholar 

  • Nashner LM (1977) Fixed patterns of rapid postural responses among leg muscles during stance. Exp Brain Res 30:13–24

    Article  PubMed  CAS  Google Scholar 

  • Newell L, Emmerik R (1989) The acquisition of coordination : a preliminary analysis of learning to write. Human Mov Sci 8:17–32

    Article  Google Scholar 

  • Nubar Y, Contini R (1961) A minimal principle in biomechanics. Bull Math Biophys 23:377–391

    Article  Google Scholar 

  • Paillard J (1971) Les determinants moteurs de l’organisation de l’espace. Cahiers Psychol 14:261–316

    Google Scholar 

  • Paillard J (1996) Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal. Can. J Physiol Pharmacol 74:401–17

    Article  PubMed  CAS  Google Scholar 

  • Pérennou D, Amblard B (2004) Man against gravity : the control of orientation and that of stabilisation are dissociated. Exp Brain Res (in press)

  • Pfeiffer F, Glocker C (1996) Multibody dynamics with unilateral contacts. Wiley-Interscience Publication, Wiley, New York

    Google Scholar 

  • Prochazka A (1989) Sensorymotor gain control: a basic strategy of motor systems? Prog Neurobiol 33:281–307

    Article  PubMed  CAS  Google Scholar 

  • Richalet J, Rault A, Testud JL, Papon J (1978) Model predictive heuristic control: applications to industrial processes. Automatica 14(2):413–428

    Article  Google Scholar 

  • Roberts TJ (2002) The integrated function of muscles and tendons during locomotion. Comp Biochem Physiol A Mol Integr Physiol 133:1087–1099

    Article  PubMed  Google Scholar 

  • Rozendal RH (1986) Biomechanics of standing and walking. In: Bles W, Brandt Th (eds). Elsevier, Amsterdam, New York

  • Samson C, Le Borgne M, Espiau B (1991) Robot control: the task function approach. Oxford University Press

  • Sardain P, Rostami M, Bessonnet G (1997) An Anthropomorphic biped robot: dynamic concepts and technological design. IEEE Trans Syst Man Cybern 28(6):823–838

    Google Scholar 

  • Scholz JP, Schöner G (1999) The uncontrolled manifold concept : identifying control variables for a functional task. Exp Brain Res pp 289–306

  • Taga G (1998) A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol Cybern 78(1):9–17

    Article  PubMed  CAS  Google Scholar 

  • Taga G, Yamaguchi Y, Shimizu H (1991) Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol Cybern 65(3):147–159

    Article  PubMed  CAS  Google Scholar 

  • Vaughan CL (2003) Theories of bipedal walking: an odyssey. J Biomech 36:513–523

    Article  PubMed  Google Scholar 

  • Vukobratović M, Borovav B, Surla D, Stokić D (1990) Biped Locomotion: dynamics, stability, control and application. Springer-Verlag, London, Great Britain

    Google Scholar 

  • Westervelt ER, Buche G, Grizzle JW (2004) Inducing dynamically stable walking in an underactuated planar biped. In IEEE International Conference on Rob. & Autom., New Orleans, April 2004, pp 4234–4239

  • Wieber PB (2000) Constrained dynamics and parametrized control in biped walking. In: Proceedings of the international symposium on mathematical theory of networks and systems

  • Wieber PB (2002) On the stability of walking systems. In: Proceedings of the international workshop on humanoid and human friendly robotics

  • Wieber PB, Chevallereau C (2004) Online adaptation of reference trajectories for the control of walking systems. (Submitted)

  • Wieber PB (2000) Modélisation et Commande d’un Robot marcheur Anthropomorphe. PhD Thesis-cole Nationale Supérieure des Mines de Paris

  • Williamson M (1998) Neural control of rythmic arm movements. Neural Netw 11(7–8):1379–1394

    Article  PubMed  Google Scholar 

  • Wolpert DM, Miall C, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 9:338–347

    Article  Google Scholar 

  • Zajac FE, Neptune RR, Kautz SA (2002) Biomechanics and muscle coordination of human walking. part i: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16:215–232

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Azevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azevedo, C., Espiau, B., Amblard, B. et al. Bipedal locomotion: toward unified concepts in robotics and neuroscience. Biol Cybern 96, 209–228 (2007). https://doi.org/10.1007/s00422-006-0118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0118-0

Keywords

Navigation