Skip to main content
Log in

Canonical TRP channels and mechanotransduction: from physiology to disease states

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Mechano-gated ion channels play a key physiological role in cardiac, arterial, and skeletal myocytes. For instance, opening of the non-selective stretch-activated cation channels in smooth muscle cells is involved in the pressure-dependent myogenic constriction of resistance arteries. These channels are also implicated in major pathologies, including cardiac hypertrophy or Duchenne muscular dystrophy. Seminal work in prokaryotes and invertebrates highlighted the role of transient receptor potential (TRP) channels in mechanosensory transduction. In mammals, recent findings have shown that the canonical TRPC1 and TRPC6 channels are key players in muscle mechanotransduction. In the present review, we will focus on the functional properties of TRPC1 and TRPC6 channels, on their mechano-gating, regulation by interacting cytoskeletal and scaffolding proteins, physiological role and implication in associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SACs:

Stretch-activated cation channels

MscL:

Bacterial mechano-sensitive large conductance channel

TRP:

Transient receptor potential channels

TRPC:

Canonical TRP channel

FSGS:

Familial focal segmental glomerulosclerosis

DMD:

Duchenne muscular dystrophy

SOCs:

Store-operated ion channels

ER:

Endoplasmic reticulum

STIM1:

Stromal interacting molecule 1

Orai proteins:

The pore-forming components of CRAC channels

RNA:

Ribonucleic acid

ROCs:

Receptor-operated channels

DAG:

Diacylglycerol

GsMTx-4:

Grammostola spatulata toxin inhibiting SACs

AT1R:

Angiotensin II type 1 receptor

Ang II:

Angiotensin II

G protein:

GTP-binding protein

PLC:

Phospholipase C

GPCR:

G protein-coupled receptor

TMD:

Transmembrane domain

M5R:

Muscarinic type 5 receptor

H1R:

Histamine type 1 receptor

ETAR:

Endothelin receptor

V1AR:

Vasopressin type 1 receptor

A7R5:

Rat vascular smooth muscle cell line

HETE:

Hydroxyeicosatetraenoic acid

MR:

Myogenic response

VSMCs:

Vascular smooth muscle cells

MEF:

Mechanoelectric feedback

TREK channels:

Mechano-gated K2P channels

OAG:

1-oleoyl-2-acetyl-sn-glycerol

MHC:

Myosin heavy chain

NFAT:

Nuclear factor of activated T cells

TAC:

Transverse aortic constriction

ATG:

Angiotensinogen

CAV:

Caveolins

eNOS:

Endothelial nitric-oxide synthase

FlnA:

Filamin A

References

  1. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    Article  PubMed  CAS  Google Scholar 

  2. Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    Article  PubMed  CAS  Google Scholar 

  3. Sukharev S, Corey DP (2004) Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE 219(1–24):4

    Google Scholar 

  4. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8(510–21):5

    Google Scholar 

  5. Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:44–52

    Article  PubMed  CAS  Google Scholar 

  6. Lumpkin EA, Caterina MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445:858–865

    Article  PubMed  CAS  Google Scholar 

  7. Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701

    PubMed  CAS  Google Scholar 

  8. Hamill OP (2006) Twenty odd years of stretch-sensitive channels. Pflugers Arch 453:333–351

    Article  PubMed  CAS  Google Scholar 

  9. Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268

    Article  PubMed  CAS  Google Scholar 

  10. Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234

    Article  PubMed  CAS  Google Scholar 

  11. Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269

    PubMed  CAS  Google Scholar 

  12. Sidi S, Friedrich RW, Nicolson T (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99

    Article  PubMed  CAS  Google Scholar 

  13. Kindt KS, Viswanath V, Macpherson L, Quast K, Hu H, Patapoutian A, Schafer WR (2007) Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat Neurosci 10:568–577

    Article  PubMed  CAS  Google Scholar 

  14. Kim J, Chung YD, Park DY, Choi S, Shin DW, Soh H, Lee HW, Son W, Yim J, Park CS, Kernan MJ, Kim C (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84

    Article  PubMed  CAS  Google Scholar 

  15. O'Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch 451:193–203

    Article  PubMed  CAS  Google Scholar 

  16. Zhou XL, Batiza AF, Loukin SH, Palmer CP, Kung C, Saimi Y (2003) The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc Natl Acad Sci USA 100:7105–7110

    Article  PubMed  CAS  Google Scholar 

  17. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    Article  PubMed  CAS  Google Scholar 

  18. Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591

    Article  PubMed  CAS  Google Scholar 

  19. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  20. Pedersen SA, Nilius B (2007) Transient receptor potential channels in mechanosensing and cell volume regulation. Meth Enzymol 428:183–207

    Article  PubMed  CAS  Google Scholar 

  21. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  PubMed  CAS  Google Scholar 

  22. Welsh DG, Morielli AD, Nelson MT, Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90:248–250

    Article  PubMed  CAS  Google Scholar 

  23. Mederos Y, Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103

    Article  CAS  Google Scholar 

  24. Ward ML, Williams IA, Chu Y, Cooper PJ, Ju YK, Allen DG (2008) Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy. Prog Biophys Mol Biol 97:232–249

    Article  PubMed  CAS  Google Scholar 

  25. Dyachenko V, Husse B, Rueckschloss U, Isenberg G (2009) Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 45:38–54

    Article  PubMed  CAS  Google Scholar 

  26. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744

    Article  PubMed  CAS  Google Scholar 

  27. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    Article  PubMed  CAS  Google Scholar 

  28. Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116:3114–3126

    Article  PubMed  CAS  Google Scholar 

  29. Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–33496

    Article  PubMed  CAS  Google Scholar 

  30. Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J 20:1660–1670

    Article  PubMed  CAS  Google Scholar 

  31. Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:5305–5316

    Article  PubMed  CAS  Google Scholar 

  32. Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105:1023–1030

    Article  PubMed  CAS  Google Scholar 

  33. Beech DJ (2005) TRPC1: store-operated channel and more. Pflugers Arch 451:53–60

    Article  PubMed  CAS  Google Scholar 

  34. Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium 42:213–223

    Article  PubMed  CAS  Google Scholar 

  35. Dietrich A, Gudermann T (2007) Trpc6. Handb Exp Pharmacol 179:125–141

    Article  PubMed  CAS  Google Scholar 

  36. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  PubMed  CAS  Google Scholar 

  37. Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A, Hagmann H, Reinhardt C, Koos F, Kunzelmann K, Shirokova E, Krautwurst D, Harteneck C, Simons M, Pavenstadt H, Kerjaschki D, Thiele C, Walz G, Chalfie M, Benzing T (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci USA 103:17079–17086

    Article  PubMed  CAS  Google Scholar 

  38. Bode F, Sachs F, Franz MR (2001) Tarantula peptide inhibits atrial fibrillation. Nature 409:35–36

    Article  PubMed  CAS  Google Scholar 

  39. Suchyna TM, Tape SE, Koeppe RE 2nd, Andersen OS, Sachs F, Gottlieb PA (2004) Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430:235–240

    Article  PubMed  CAS  Google Scholar 

  40. Inoue R, Jensen LJ, Jian Z, Shi J, Hai L, Lurie AI, Henriksen FH, Salmonsson M, Morita H, Kawarabayashi Y, Mori M, Mori Y, Ito Y (2009) Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/{omega}-hydroxylase/20-HETE pathways. Circ Res 104:1399–1409

    Article  PubMed  CAS  Google Scholar 

  41. Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honore E (2007) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455:529–540

    Google Scholar 

  42. Park KS, Kim Y, Lee YH, Earm YE, Ho WK (2003) Mechanosensitive cation channels in arterial smooth muscle cells are activated by diacylglycerol and inhibited by phospholipase C inhibitor. Circ Res 93:557–564

    Article  PubMed  CAS  Google Scholar 

  43. Yasuda N, Miura S, Akazawa H, Tanaka T, Qin Y, Kiya Y, Imaizumi S, Fujino M, Ito K, Zou Y, Fukuhara S, Kunimoto S, Fukuzaki K, Sato T, Ge J, Mochizuki N, Nakaya H, Saku K, Komuro I (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9:179–186

    Article  PubMed  CAS  Google Scholar 

  44. Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506

    Article  PubMed  CAS  Google Scholar 

  45. Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423

    PubMed  CAS  Google Scholar 

  46. Hill MA, Davis MJ, Meininger GA, Potocnik SJ, Murphy TV (2006) Arteriolar myogenic signalling mechanisms: implications for local vascular function. Clin Hemorheol Microcirc 34:67–79

    PubMed  Google Scholar 

  47. Takenaka T, Suzuki H, Okada H, Hayashi K, Ozawa Y, Saruta T (1998) Biophysical signals underlying myogenic responses in rat interlobular artery. Hypertension 32:1060–1065

    PubMed  CAS  Google Scholar 

  48. Takenaka T, Suzuki H, Okada H, Hayashi K, Kanno Y, Saruta T (1998) Mechanosensitive cation channels mediate afferent arteriolar myogenic constriction in the isolated rat kidney. J Physiol 511:245–253

    Article  PubMed  CAS  Google Scholar 

  49. Dietrich A, Kalwa H, Storch U, Mederos YSM, Salanova B, Pinkenburg O, Dubrovska G, Essin K, Gollasch M, Birnbaumer L, Gudermann T (2007) Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 455:465–477

    Article  PubMed  CAS  Google Scholar 

  50. Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol Cell Biol 25:6980–6989

    Article  PubMed  CAS  Google Scholar 

  51. Link MS, Estes NA 3rd (2007) Mechanically induced ventricular fibrillation (commotio cordis). Heart Rhythm 4:529–532

    Article  PubMed  Google Scholar 

  52. Kohl P, Ravens U (2003) Cardiac mechano-electric feedback: past, present, and prospect. Prog Biophys Mol Biol 82:3–9

    Article  PubMed  Google Scholar 

  53. Kohl P, Bollensdorff C, Garny A (2006) Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp Physiol 91:307–321

    Article  PubMed  Google Scholar 

  54. Ravens U (2003) Mechano-electric feedback and arrhythmias. Prog Biophys Mol Biol 82:255–266

    Article  PubMed  Google Scholar 

  55. Sachs F (2005) Stretch-activated channels in the heart. In: Kohl P, Sachs F, Franz M (eds) Cardiac mechano-electric feedback and arrhythmias, from pipette to patient. Elsevier, Philadelphia, pp 2–10

    Google Scholar 

  56. Patel A, Honoré E (2005) Cardiac mechano-gated K + channels. In: Kohl P, Sachs F, Franz M (eds) Cardiac mechano-electric feedback and arrhythmias, from pipette to patient. Elsevier, Philadelphia, pp 11–20

    Google Scholar 

  57. Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I, Kamkin A (2003) Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes. Prog Biophys Mol Biol 82:43–56

    Article  PubMed  CAS  Google Scholar 

  58. Olson EN, Schneider MD (2003) Sizing up the heart: development redux in disease. Genes Dev 17:1937–1956

    Article  PubMed  CAS  Google Scholar 

  59. Dorn GW 2nd, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537

    PubMed  CAS  Google Scholar 

  60. Ahmad F, Seidman JG, Seidman CE (2005) The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet 6:185–216

    Article  PubMed  CAS  Google Scholar 

  61. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci USA 107:7000–7005

    Article  PubMed  Google Scholar 

  62. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci USA 106:5400–5405

    Article  PubMed  Google Scholar 

  63. Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sumimoto H, Mori Y, Makino N (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 294:205–215

    Article  PubMed  CAS  Google Scholar 

  64. Ohba T, Watanabe H, Murakami M, Takahashi Y, Iino K, Kuromitsu S, Mori Y, Ono K, Iijima T, Ito H (2007) Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 42:498–507

    Article  PubMed  CAS  Google Scholar 

  65. Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 132:1–77

    Article  PubMed  CAS  Google Scholar 

  66. Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  67. Vandebrouck C, Duport G, Cognard C, Raymond G (2001) Cationic channels in normal and dystrophic human myotubes. Neuromuscul Disord 11:72–79

    Article  PubMed  CAS  Google Scholar 

  68. Franco A Jr, Lansman JB (1990) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344:670–673

    Article  PubMed  CAS  Google Scholar 

  69. Sharif Naeini R, Folgering J, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honoré E (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139:587–596

    Article  PubMed  CAS  Google Scholar 

  70. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  PubMed  CAS  Google Scholar 

  71. Bonilla E, Samitt CE, Miranda AF, Hays AP, Salviati G, DiMauro S, Kunkel LM, Hoffman EP, Rowland LP (1988) Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface. Cell 54:447–452

    Article  PubMed  CAS  Google Scholar 

  72. Vandebrouck A, Sabourin J, Rivet J, Balghi H, Sebille S, Kitzis A, Raymond G, Cognard C, Bourmeyster N, Constantin B (2007) Regulation of capacitative calcium entries by alpha1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of alpha1-syntrophin. FASEB J 21:608–617

    Article  PubMed  CAS  Google Scholar 

  73. Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, Seth M, Yamaguchi N, Meissner G, Shah R, Worley PF, Williams RS, Rosenberg PB (2008) Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28:2637–2647

    Article  PubMed  CAS  Google Scholar 

  74. Formigli L, Sassoli C, Squecco R, Bini F, Martinesi M, Chellini F, Luciani G, Sbrana F, Zecchi-Orlandini S, Francini F, Meacci E (2009) Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation. J Cell Sci 122:1322–1333

    Article  PubMed  CAS  Google Scholar 

  75. Allen DG, Whitehead NP, Yeung EW (2005) Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 567:723–735

    Article  PubMed  CAS  Google Scholar 

  76. Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG (2005) Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol 562:367–380

    Article  PubMed  CAS  Google Scholar 

  77. Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278:27208–27215

    Article  PubMed  CAS  Google Scholar 

  78. Gervasio OL, Whitehead NP, Yeung EW, Phillips WD, Allen DG (2008) TRPC1 binds to caveolin-3 and is regulated by Src kinase - role in Duchenne muscular dystrophy. J Cell Sci 121:2246–2255

    Article  PubMed  CAS  Google Scholar 

  79. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  PubMed  CAS  Google Scholar 

  80. Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116:1284–1291

    Article  PubMed  CAS  Google Scholar 

  81. Sedding DG, Hermsen J, Seay U, Eickelberg O, Kummer W, Schwencke C, Strasser RH, Tillmanns H, Braun-Dullaeus RC (2005) Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 96:635–642

    Article  PubMed  CAS  Google Scholar 

  82. Adebiyi A, Zhao G, Cheranov SY, Ahmed A, Jaggar JH (2007) Caveolin-1 abolishment attenuates the myogenic response in murine cerebral arteries. Am J Physiol Heart Circ Physiol 292:H1584–H1592

    Article  PubMed  CAS  Google Scholar 

  83. Bichet D, Peters D, Patel A, Delmas P, Honoré E (2006) The cardiovascular polycystins: insights from autosomal dominant polycystic kidney disease and transgenic animal models. Trends Cardiovasc Med 16:292–298

    Article  PubMed  CAS  Google Scholar 

  84. Delmas P (2004) Polycystins: from mechanosensation to gene regulation. Cell 118:145–148

    Article  PubMed  CAS  Google Scholar 

  85. Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honoré E, Delmas P (2006) The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 7:787–793

    Article  PubMed  CAS  Google Scholar 

  86. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  87. Aboualaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869

    Article  PubMed  CAS  Google Scholar 

  88. Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171

    Article  PubMed  CAS  Google Scholar 

  89. McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73

    Article  PubMed  CAS  Google Scholar 

  90. Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943

    Article  PubMed  CAS  Google Scholar 

  91. Karcher C, Fischer A, Schweickert A, Bitzer E, Horie S, Witzgall R, Blum M (2005) Lack of a laterality phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia. Differentiation 73:425–432

    Article  PubMed  CAS  Google Scholar 

  92. Praetorius HA, Spring KR (2003) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12:517–520

    Article  PubMed  Google Scholar 

  93. Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  PubMed  CAS  Google Scholar 

  94. Zhou J (2009) Polycystins and primary cilia: primers for cell cycle progression. Annu Rev Physiol 71:83–113

    Article  PubMed  CAS  Google Scholar 

  95. Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145

    Article  PubMed  CAS  Google Scholar 

  96. Bai C, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P (2008) Formation of a novel receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9:472–479

    Article  PubMed  CAS  Google Scholar 

  97. Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939

    Article  PubMed  CAS  Google Scholar 

  98. Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Delmas P, Patel A, Honore E (2010) Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. J Mol Cell Cardiol 48:83–89

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the ANR 2005 cardiovasculaire-obésité-diabète, to the ANR 2008 du gène à la physiopathologie, to the Association for information and research on genetic kidney disease France, to the Fondation del Duca, to the Human Frontier Science Program Organization-long term fellowship, to the Fondation de la recherche médicale, to the Fondation de France, to the Fondation de recherche sur l’hypertension artérielle, to the Fédération pour la recherche sur le cerveau, to Société Générale AM, to the Université of Nice Sophia Antipolis and to the CNRS for financial support. We are grateful to Dr. Sophie Demolombe for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Honoré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, A., Sharif-Naeini, R., Folgering, J.R.H. et al. Canonical TRP channels and mechanotransduction: from physiology to disease states. Pflugers Arch - Eur J Physiol 460, 571–581 (2010). https://doi.org/10.1007/s00424-010-0847-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0847-8

Keywords

Navigation