Skip to main content

Advertisement

Log in

Cyanobacterial H2 production — a comparative analysis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Several unicellular and filamentous, nitrogen-fixing and non-nitrogen-fixing cyanobacterial strains have been investigated on the molecular and the physiological level in order to find the most efficient organisms for photobiological hydrogen production. These strains were screened for the presence or absence of hup and hox genes, and it was shown that they have different sets of genes involved in H2 evolution. The uptake hydrogenase was identified in all N2-fixing cyanobacteria, and some of these strains also contained the bidirectional hydrogenase, whereas the non-nitrogen fixing strains only possessed the bidirectional enzyme. In N2-fixing strains, hydrogen was mainly produced by the nitrogenase as a by-product during the reduction of atmospheric nitrogen to ammonia. Therefore, hydrogen production was investigated both under non-nitrogen-fixing conditions and under nitrogen limitation. It was shown that the hydrogen uptake activity is linked to the nitrogenase activity, whereas the hydrogen evolution activity of the bidirectional hydrogenase is not dependent or even related to diazotrophic growth conditions. With regard to large-scale hydrogen evolution by N2-fixing cyanobacteria, hydrogen uptake-deficient mutants have to be used because of their inability to re-oxidize the hydrogen produced by the nitrogenase. On the other hand, fermentative H2 production by the bidirectional hydrogenase should also be taken into account in further investigations of biological hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–k
Fig. 2a, b
Fig. 3

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

MV:

methyl viologen

References

  • Allen MM (1968) Simple conditions for growth of unicellular blue–green algae on plates. J Phycol 4:1–4

    CAS  Google Scholar 

  • Aoyama K, Uemura I, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Ferment Bioeng 83:17–20

    Article  CAS  Google Scholar 

  • Appel J, Schulz R (1998) Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? J Photochem Photobiol B: Biol 47:1–11

  • Appel J, Phunpruch S, Steinmüller K, Schulz R (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173:333–338

    CAS  PubMed  Google Scholar 

  • Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    Article  CAS  Google Scholar 

  • Bishop PE, Premakumar R (1992) Alternative nitrogen fixation systems. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 736–762

  • Böhme H (1998) Regulation of nitrogen fixation in heterocyst-forming cyanobacteria. Trends Plant Sci 3:346–351

    Google Scholar 

  • Boison G, Schmitz O, Mikheeva L, Shestakov S, Bothe H (1996) Cloning, molecular analysis and insertional mutagenesis of the bidirectional hydrogenase genes from the cyanobacterium Anacystis nidulans. FEBS Lett 394:153–158

    Article  CAS  PubMed  Google Scholar 

  • Borodin VB, Tsygankov AA, Rao KK, Hall DO (2000) Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnol Bioeng 69:478–485

    Article  CAS  PubMed  Google Scholar 

  • Carrasco CD, Buettner JA, Golden JW (1995) Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocystous. Proc Natl Acad Sci USA 92:791–795

    CAS  PubMed  Google Scholar 

  • Carrasco CD, Garcia JS, Golden JW (1998) Programed DNA rearrangement of a hydrogenase gene during Anabaena heterocyst development. In: Zaborsky OR, Benemann JR, Matsunaga T, Miyake J, San Pietro A (eds) BioHydrogen. Plenum Press, New York, pp 203–207

  • Castenholz RW (1998) Culturing methods for cyanobacteria. Methods Enzymol 167:68–93

    Google Scholar 

  • Fedorov AS, Tsygankov AA, Rao KK, Hall DO (2001) Production of hydrogen by an Anabaena variabilis mutant in a photobioreactor under aerobic outdoor conditions. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II. Elsevier, Oxford pp 223–228

  • Fiore MF, Moon DH, Tsai SM, Lee H, Trevors JT (2000) Miniprep DNA isolation from unicellular and filamentous cyanobacteria. J Microbiol Methods 39:159–169

    Article  CAS  PubMed  Google Scholar 

  • Gallon JR, Perry SM, Rajab TMA, Flayesh KAM, Chaplin AE (1988) Metabolic changes associated with the diurnal pattern of N2 fixation in Gloeothece. J Gen Microbiol 134:3079–3087

    CAS  Google Scholar 

  • Hansel A, Lindblad P (1998) Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl Microbiol Biotechnol 50:153–160

    Article  CAS  Google Scholar 

  • Hansel A, Axelsson R, Lindberg P, Troshina OY, Wünschiers R, Lindblad P (2001) Cloning and characterization of a hyp gene cluster in the filamentous cyanobacterium Nostoc sp. strain PCC 73102. FEMS Microbiol Lett 201:59–64

    Article  CAS  PubMed  Google Scholar 

  • Haselkorn R, Buikema WJ (1992) Nitrogen fixation in cyanobacteria, In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, London, pp 166–190

  • Happe T, Naber JD (1993) Isolation, characterization and amino acid sequence of hydrogenase from the green algae Chlamydomonas reinhardtii. Eur J Biochem 214:475–478

    CAS  PubMed  Google Scholar 

  • Happe T, Schütz K, Böhme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182:1624–1631

    CAS  PubMed  Google Scholar 

  • Houchins JP (1984) The physiology and biochemistry of hydrogen metabolism in cyanobacteria. Biochim Biophys Acta 768:227–255

    Article  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa, M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 30:185–209

    Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213

    CAS  PubMed  Google Scholar 

  • Kentemich T, Danneberg G, Hundeshagen B, Bothe H (1988) Evidence for the occurrence of the alternative, vanadium-containing nitrogenase in the cyanobacterium Anabaena variabilis. FEMS Microbiol Lett 51:19–24

    Article  CAS  Google Scholar 

  • Kentemich T, Haverkamp G, Bothe H (1991) The expression of a third nitrogenase in the cyanobacterium Anabaena variabilis. Z Naturforsch Teil C 46:217–222

    CAS  Google Scholar 

  • Lindberg P, Schütz K, Happe T, Lindblad P (2002) A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. Int J Hydrogen Energy 27:1291–1296

    Article  CAS  Google Scholar 

  • Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A (2002) Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydrogen Energy 27:1271–1281

    Article  CAS  Google Scholar 

  • Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58:618–624

    Article  CAS  PubMed  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106

    CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kaneko T, Hirosawa, M, Miyajima N, Tabata S (1998) CyanoBase, a www database containing the complete genome of Synechocystis sp. strain PCC 6803. Nucleic Acids Res 20:63–67

    Article  Google Scholar 

  • Oxelfelt F, Tamagnini P, Salema R, Lindblad P (1995) Hydrogen uptake in Nostoc strain PCC 73102: effects of nickel, hydrogen, carbon and nitrogen. Plant Physiol Biochem 33:617–623

    CAS  Google Scholar 

  • Oxelfelt F, Tamagnini P, Lindblad P (1998) Hydrogen uptake in Nostoc sp. strain PCC 73102. Cloning and characterization of a hupSL homologue. Arch Microbiol 169:267–274

    Article  CAS  PubMed  Google Scholar 

  • Oxelfelt F, Oliveira P, Leitão E, Barros M, Cardoso P, Tamagnini P (2002) Uptake hydrogenases in the unicellular cyanobacteria Gloeothece ATCC 27152 and Cyanothece ATCC 51142. 5th European workshop on the molecular biology of cyanobacteria. Stockholm, Sweden

  • Paschos A, Bauer A, Zimmermann A, Zehelein E, Bock A (2002) HypF, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation. J Biol Chem 277:49945–49951

    Article  CAS  PubMed  Google Scholar 

  • Peterson GL (1983) Determination of total protein. Methods Enzymol 91:95–119

    PubMed  Google Scholar 

  • Pinto F, Troshina O, Lindblad P (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrogen Energy 27:1209–1215

    Article  Google Scholar 

  • Rao KK, Hall DO (1996) Hydrogen production by cyanobacteria: potential, problems and prospects. J Mar Biotechnol 4:10–15

    CAS  Google Scholar 

  • Reade JPH, Dougherty LJ, Rogers LJ, Gallon JR (1999) Synthesis and proteolytic degradation of nitrogenase in cultures of the unicellular cyanobacterium Gloeothece strain ATCC 27152. Microbiology 145:1749–1758

    CAS  PubMed  Google Scholar 

  • Reissmann S, Hochleitner E, Wang H, Paschos A, Lottspeich F, Glass RS, Bock A (2003) Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science 299:1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, USA

    Google Scholar 

  • Schmitz O, Bothe H (1996) The diaphorase subunit HoxU of the bidirectional hydrogenase as electron transferring protein in cyanobacterial respiration? Naturwissenschaften 83:525–527

    Article  CAS  PubMed  Google Scholar 

  • Schmitz O, Boison G, Hilscher R, Hudeshagen B, Zimmer W, Lottspeich F, Bothe H (1995) Molecular biological analysis of a bi-directional hydrogenase from cyanobacteria. Eur J Biochem 233:266–276

    CAS  PubMed  Google Scholar 

  • Schmitz O, Boison G, Salzmann H, Bothe H, Schütz K, Wang SH, Happe T (2002) HoxE — a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria. Biochim Biophys Acta 1554:66–74

    Article  CAS  PubMed  Google Scholar 

  • Schulz R (1996) Hydrogenases and hydrogen production in eukaryotic organisms and cyanobacteria. J Mar Biotechnol 4:16–22

    CAS  Google Scholar 

  • Serebriakova L, Zorin NA, Lindblad P (1994) Reversible hydrogenase in Anabaena variabilis ATCC 29413: Presence and localization in non-N2-fixing cells. Arch Microbiol 161:140–144

    CAS  Google Scholar 

  • Sheremetieva ME, Troshina OY, Serebryakova LT, Lindblad P (2002) Identification of hox genes and analysis of their transcription in the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 growing under nitrate-limiting conditions. FEMS Microbiol Lett 214:229–33

    Article  CAS  PubMed  Google Scholar 

  • Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:170–211

    Article  Google Scholar 

  • Tamagnini P, Troshina O, Oxelfelt F, Salema R, Lindblad P (1997) Hydrogenases in Nostoc sp. strain PCC 73102, a strain lacking a bidirectional enzyme. Appl Environ Microbiol 63:1801–1807

    CAS  Google Scholar 

  • Tamagnini P, Costa J-L, Almeida L, Oliveira M-J, Salema R, Lindblad P (2000) Diversity of cyanobacterial hydrogenases, a molecular approach. Curr Microbiol 40:356–361

    CAS  PubMed  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20

    Article  CAS  PubMed  Google Scholar 

  • Thiel T (1993) Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 175:6276–6286

    CAS  PubMed  Google Scholar 

  • Thiel T, Lyons EM, Erker JC, Ernst A (1995) A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA 92:9358–9362

    CAS  PubMed  Google Scholar 

  • Thiel T, Lyons EM, Erker JC (1997) Characterization of genes for a second Mo-dependent nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 179:5222–5225

    CAS  PubMed  Google Scholar 

  • Troshina O, Serebryakova L, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int J Hydrogen Energy 27:1283–1289

    Article  CAS  Google Scholar 

  • Tsygankov AA, Serebryakova LT, Sveshnikov DA, Rao KK, Gogotov IN, Hall DO (1998) Hydrogen photoproduction by three different nitrogenases in whole cells of Anabaena variabilis and the dependence on pH. Int J Hydrogen Energy 22:859–867

    Article  Google Scholar 

  • Tsygankov AA, Borodin VB, Rao KK, Hall DO (1999) H2 Photoproduction by batch culture of Anabaena variabilis ATCC 29143 and its mutant PK84 in a photobioreactor. Biotechnol Bioeng 64:709–715

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the Portuguese team was financially supported by FCT and FSE (III Quadro Comunitário de Apoio), and PRAXIS/P/BIA/13238/98. Financial support from the European Science Foundation Program on Cyanobacterial Nitrogen Fixation (CYANOFIX), COST Action 841, the Swedish Energy Agency, and the Swedish Research Council is gratefully acknowledged. The cyanobacterial strains Gloeothece sp. ATCC 27152 and Lyngbya majuscula CCAP 1446/4 were kindly provided by Professors J.R. Gallon and P.C. Wright, respectively. We thank Dr. Helena Carvalho for assistance with the optical microscopy work, and Fredrik Oxelfelt for the Gloeothece DNA-extraction method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Tamagnini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütz, K., Happe, T., Troshina, O. et al. Cyanobacterial H2 production — a comparative analysis. Planta 218, 350–359 (2004). https://doi.org/10.1007/s00425-003-1113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1113-5

Keywords

Navigation