Skip to main content
Log in

Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Ergoline alkaloids are constituents of Clavicipitaceous fungi living on Poaceae plants. Ergoline alkaloids as well as volatile oil are also present in Ipomoea asarifolia Roem. & Schult (Convolvulaceae). Treatment of this plant with two fungicides (Folicur, Pronto Plus) eliminates the ergoline alkaloids but not the volatile oil. Elimination of ergoline alkaloids occurs concomitantly with loss of fungal hyphae associated with secretory glands on the upper leaf surface of the Ipomoea plant. Our observations suggest that accumulation of ergoline alkaloids in the Convolvulaceae may depend on the presence of a plant-associated fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 a,b
Fig. 4

Similar content being viewed by others

References

  • Broun P, Somerville C (2001) Progress in plant metabolic engineering. Proc Natl Acad Sci USA 98:8925–8927

    Article  CAS  PubMed  Google Scholar 

  • Buades C, Moya A (1996) Phylogenetic analysis of the isopenicillin-N-synthetase horizontal gene transfer. J Mol Evol 42:537–542

    CAS  PubMed  Google Scholar 

  • Bushman F (2002) Lateral DNA transfer. Mechanisms and consequences. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • Caruso M, Colombo AL, Fedeli L, Pavesi A, Quadroni S, Saracchi M, Ventrella G (2000) Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50:3–13

    CAS  Google Scholar 

  • Clay K (1991) Fungal endophytes, grasses and herbivores. In: Barbose P, Krischik VA, Jones CG (eds) Microbial mediation of plant–herbivore interactions. Wiley, New York, pp 199–226

  • Clay K, Frentz IC (1993) Balansia pilulaeformis, an epiphytic species. Mycologia 85:527–534

    Google Scholar 

  • Davidse LC (1987) Biochemical aspects of benzimidazole fungicides-action and resistance. In: Lyr H (ed) Modern selective fungicides. Fischer, Jena, pp 245–257

  • Dobberstein RH, Staba EJ (1969) Ipomoea, Rivea and Argyreia tissue cultures: influence of various chemical factors on indole alkaloid production and growth. Lloydia 32:141–147

    CAS  PubMed  Google Scholar 

  • Europäisches Arzneibuch (1997) Amtliche deutsche Ausgabe, 3rd edn. Deutscher Apotheker Verlag, Stuttgart; Govi-Verlag-Pharmazeutischer Verlag, Eschborn, pp 129–130

  • Frach K, Blaschke G (1998) Separation of ergot alkaloids and their epimers and determination in sclerotia by capillary electrophoresis. J Chromatogr A 808:247–252

    Article  CAS  PubMed  Google Scholar 

  • Fritz R, Lanen C, Colas V, Leroux P (1997) Inhibition of methionine biosynthesis in Botrytis cinera by the anilinopyromidine fungicide pyrimenthanil. Pestic Sci 49:40–46

    Article  CAS  Google Scholar 

  • Gröger D, Floss HG (1998) Biochemistry of ergot alkaloids—achievements and challenges. In: Cordell GA (ed) The alkaloids, vol 50. Academic Press, San Diego, pp 171–218

  • Hegnauer R (1992) Chemotaxonomie der Pflanzen. Birkhäuser, Basel

  • Hochmuth DH, Joulain D, König WA (2002) MassFinder Software and Data Bank, University of Hamburg. http://www.chemie.uni-hamburg.de/oc/koenig/massfinder.html

  • Jenett-Siems K, Kaloga M, Eich E (1994) Ergobalansine/ergobalansinine, a proline-free peptide-type alkaloid of the fungal genus Balansia, is a constituent of Ipomoea piurensis. J Nat Prod 57:1304–1306

    CAS  Google Scholar 

  • Kuck KH, Thielert W (1987) On the systemic properties of HWG 1608, the active ingredient of the fungicides Folicur and Raxil. Pflanzenschutz Nachr Bayer 40:133–152

    CAS  Google Scholar 

  • Lechevalier HA (1975) Production of the same antibiotics by members of different genera of microorganisms. Adv Appl Microbiol 19:25–45

    CAS  PubMed  Google Scholar 

  • Lewis EA, Bills GF, Heredia G, Reyes M, Arias RM, White JF Jr (2002) A new species of endophytic Balansia from Veracruz, Mexico. Mycologia 94:1066–1070

    Google Scholar 

  • Lyr H (1995) Selectivity in modern fungicides and its basis. In: Lyr H (ed) Modern selective fungicides: properties, applications, mechanisms of action. Fischer, Stuttgart, pp 13–22

  • Masner P, Muster P, Schmid P (1994) Possible methionine biosynthesis inhibition by pyrimidinamine fungicides. Pestic Sci 42:163–166

    CAS  Google Scholar 

  • Mockaitis JM, Kivilaan A, Schulze A (1973) Studies of the loci of indole alkaloid biosynthesis and alkaloid translocation in Ipomoea violacea plants. Biochem Physiol Pflanz 164:248–257

    CAS  Google Scholar 

  • Mothes K (1981) The problem of chemical convergence in secondary metabolism. Sci Scientists 323–326

  • Mucciarelli M, Scannerini S, Bertea C M, Maffei M (2002) An ascomycetous endophyte isolated from Mentha piperita L.: biological features and molecular studies. Mycologia 94:28–39

    Google Scholar 

  • Nahrstedt A (1996) Relationships between the defense systems of plants and insects. In: Romeo JT, Saunders JA, Barbosa P (eds) Recent advances in phytochemistry, vol 30. Plenum, New York, pp 217–230

  • Noh M-J, Yang J-G, Kim K-S, Yoon Y-M, Kang K-A, Han H-Y, Shim S-B, Park H-J (1999) Isolation of a novel microorganism, Pestalotia heterocornis. Biotechnol Bioeng 64:620–623

    Article  CAS  PubMed  Google Scholar 

  • Ortega F, Steiner U, Dehne HW (1998) Induced resistance to apple scab: microscopic studies on the infection cycle of Venturia inaequalis (Cke.) Wint. J Phytopathol 146:399–405

    CAS  Google Scholar 

  • Panaccione DG, Johnson RD, Wang J, Young CA, Damronykool P, Scott B, Schardl CL (2001) Elimination of ergovaline from a grass–Neotyphodium endophytic symbiosis by genetic modification of the endophyte. Proc Natl Acad Sci USA 98:12820–12825

    Article  CAS  PubMed  Google Scholar 

  • Porter JK (1994) Chemical constituents of grass endophytes. In: Bacon CW, White JW Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, pp 103–123

  • Reddy PV, Bergen MS, Patel R, White JF Jr (1998) An examination of molecular phylogeny and morphology of the grass endophyte Balansia claviceps and similar species. Mycologia 90:108–117

    CAS  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1995) The search for a taxol-producing microorganism among the endophytic fungi of the pacific yew, Taxus brevifolia. J Nat Prod 58:1315–1324

    CAS  PubMed  Google Scholar 

  • Strobel G, Yang X, Sear J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440

    CAS  PubMed  Google Scholar 

  • Taber WA, Heacock RA (1962) Location of ergot alkaloid and fungi in the seed of Rivea corymbosa (L.) Hall. f., “Ololiuqui”. Can J Microbiol 8:137–143

    CAS  PubMed  Google Scholar 

  • Taber WA, Vining LC, Heacock RA (1963) Clavine and lysergic acid alkaloids in varieties of morning glory. Phytochemistry 2:65–70

    Article  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    CAS  PubMed  Google Scholar 

  • Tiemann R, Berg D, Krämer W, Pontzen R (1997) Biochemistry of the new fungicide KWG 4168 (spiroxamine). Pflanzenschutz Nachr Bayer 57:211–219

    Google Scholar 

  • Tudzynski P, Correia T, Keller U (2001) Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol 57:593–605

    Article  CAS  PubMed  Google Scholar 

  • Walker K, Croteau R (2001) Taxol biosynthetic genes. Phytochemistry 58:1–7

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W (2000) Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol Lett 193:249–253

    Article  CAS  PubMed  Google Scholar 

  • Wani MV, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    CAS  PubMed  Google Scholar 

  • Werner S, Steiner U, Becher R, Kortekamp A, Zyprian E, Deising HB (2002) Chitin synthesis during in planta growth and asexual propagation of the cellulosic oomycete and obligate biotrophic grapevine pathogen Plasmopara viticola. FEMS Microbiol Lett 208:169–173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. D. Gröger (Halle, Germany) for reference samples, Dr. E. Eich (Berlin, Germany) for reference samples and seeds and Dr. Chris Schardl (Lexington, KY, USA) for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Leistner.

Additional information

Dedicated to Wolfgang Steglich, München, on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucht, S., Groß, J., Hussein, Y. et al. Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides. Planta 219, 619–625 (2004). https://doi.org/10.1007/s00425-004-1261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1261-2

Keywords

Navigation