Skip to main content
Log in

Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Lignification in Zinnia elegans L. stems is characterized by a burst in the production of H2O2, the apparent fate of which is to be used by xylem peroxidases for the polymerization of p-hydroxycinnamyl alcohols into lignins. A search for the sites of H2O2 production in the differentiating xylem of Z. elegans stems by the simultaneous use of optical (bright field, polarized light and epi-polarization) and electron-microscope tools revealed that H2O2 is produced on the outer-face of the plasma membrane of both differentiating (living) thin-walled xylem cells and particular (non-lignifying) xylem parenchyma cells. From the production sites it diffuses to the differentiating (secondary cell wall-forming) and differentiated lignifying xylem vessels. H2O2 diffusion occurs mainly through the continuous cell wall space. Both the experimental data and the theoretical calculations suggest that H2O2 diffusion from the sites of production might not limit the rate of xylem cell wall lignification. It can be concluded that H2O2 is produced at the plasma membrane in differentiating (living) thin-walled xylem cells and xylem parenchyma cells associated to xylem vessels, and that it diffuses to adjacent secondary lignifying xylem vessels. The results strongly indicate that non-lignifying xylem parenchyma cells are the source of the H2O2 necessary for the polymerization of cinnamyl alcohols in the secondary cell wall of lignifying xylem vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a,b
Fig. 2a–d
Fig. 3a–c
Fig. 4a–d
Fig. 5 a

Similar content being viewed by others

Abbreviations

DCFH-DA :

2,7-Dichlorofluorescein diacetate

DIC :

Differential interference contrast

TMB :

3,3′,5,5′-Tetramethylbenzidine

References

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559–1572

    Article  CAS  PubMed  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    Article  CAS  PubMed  Google Scholar 

  • Czaninski Y (1979) Cytochimie ultrastructurale des parois du xylème secondarie. Biol Cell 35:97–102

    Google Scholar 

  • Czaninski Y, Sachot RM, Catesson AM (1993) Cytochemical localization of hydrogen peroxide in lignifying cell walls. Ann Bot 72:547–550

    Article  CAS  Google Scholar 

  • Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci USA 99:15794–15799

    Article  PubMed  Google Scholar 

  • Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J 330:115–120

    CAS  PubMed  Google Scholar 

  • Fukuda H (1996) Xylogenesis: initiation, progression and cell death. Annu Rev Plant Physiol Plant Mol Biol 47:299–325

    Article  CAS  PubMed  Google Scholar 

  • Grabber JH, Ralph J, Hatfield RD (1988) Severe inhibition of maize wall degradation by synthetic lignins formed with coniferylaldehyde. J Sci Food Agric 78:81–87

    Article  Google Scholar 

  • Groover A, DeWitt N, Heidel A, Jones A (1997) Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma 196:197–211

    Google Scholar 

  • Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem 257:3669–3675

    CAS  PubMed  Google Scholar 

  • Kieffer F, Simon-Plas F, Maume BF, Blein J-P (1997) Tobacco cells contain a protein, immunologically related to the neutrophil small G protein Rac2 and involved in elicitor-induced oxidative burst. FEBS Lett 403:149–153

    Article  CAS  PubMed  Google Scholar 

  • Kozela C, Regan S (2003) How plants make tubes. Trends Plant Sci 8:159–164

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Dean JFD, Friedman WE, Eriksson KEL (1994) A laccase-like phenoloxidase is correlated with lignin biosynthesis in Zinnia elegans stem tissues. Plant J 6:213–224

    Article  CAS  Google Scholar 

  • Liu L, Eriksson KEL, Dean JFD (1995) Localization of hydrogen peroxide production in Pisum sativum L. using epi-polarization microscopy to follow cerium perhydroxide deposition. Plant Physiol 107:501–506

    CAS  PubMed  Google Scholar 

  • Liu L, Eriksson KEL, Dean JFD (1999) Localization of hydrogen peroxide production in Zinnia elegans L. stems. Phytochemistry 52:545–554

    Article  CAS  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unraveling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274

    Article  CAS  PubMed  Google Scholar 

  • Nakanomyo I, Kost B, Chua NH, Fukuda H (2002) Preferential and asymmetrical accumulation of a Rac small GTPase mRNA in differentiating xylem cells of Zinnia elegans. Plant Cell Physiol 43:1484–1492

    Article  CAS  PubMed  Google Scholar 

  • Nose M, Bernards MA, Furlan M, Zajicek J, Eberhardt TL, Lewis NG (1995) Towards the specification of consecutive steps in macro-molecular lignin assembly. Phytochemistry 39:71–79

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol 38:1118–1126

    CAS  PubMed  Google Scholar 

  • Olson PD, Varner JE (1993) Hydrogen peroxide and lignification. Plant J 4:887–892

    Article  CAS  Google Scholar 

  • Pomar F, Merino F, Ros Barceló A (2002) O-4-linked coniferyl and sinapyl aldehydes in lignifying cell walls are the targets of the Wiesner (phloroglucinol–HCl) reaction. Protoplasma 220:17–28

    Article  CAS  PubMed  Google Scholar 

  • Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A (1999) The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol 119:849–858

    Article  CAS  PubMed  Google Scholar 

  • Ralph J, Peng J, Lu F, Hatfield RD, Helm RF (1999) Are lignins optically active? J Agric Food Chem 47:2991–2996

    Article  CAS  PubMed  Google Scholar 

  • Roberts K, McCann MC (2000) Xylogenesis: the birth of a corpse. Curr Opin Plant Biol 3:517–522

    Article  CAS  PubMed  Google Scholar 

  • Ros Barceló A (1997) Lignification in plant cell walls. Int Rev Cytol 176:87–132

    Google Scholar 

  • Ros Barceló A (1998a) The generation of H2O2 in the xylem of Zinnia elegans is mediated by an NADPH-oxidase-like enzyme. Planta 207:207–216

    Article  Google Scholar 

  • Ros Barceló A (1988b) Hydrogen peroxide production is a general property of the lignifying xylem from vascular plants. Ann Bot 82:97–103

    Google Scholar 

  • Ros Barceló A, Ferrer MA, García-Florenciano E, Muñoz R (1991) The tonoplast localization of two strongly basic isoperoxidases of high pI in Lupinus. Bot Acta 104:272–278

    Google Scholar 

  • Ros Barceló A, Pomar F, López-Serrano M, Martínez P, Pedreño MA (2002) Developmental regulation of the H2O2-producing system and of a basic peroxidase isoenzyme in the Zinnia elegans lignifying xylem. Plant Physiol Biochem 40:325–332

    Article  Google Scholar 

  • Schopfer P (1994) Histochemical demonstration and localization of H2O2 in organs of higher plants by tissue printing on nitrocellulose paper. Plant Physiol 104:1269–1275

    CAS  PubMed  Google Scholar 

  • Shininger TL (1979) The control of vascular development. Annu Rev Plant Physiol 30:313–337

    Article  CAS  Google Scholar 

  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14:365–370

    Google Scholar 

  • Valster AH, Hepler PK, Chernoff J (2000) Plant GTPases: the Rhos in bloom. Trends Cell Biol 10:141–146

    Article  CAS  PubMed  Google Scholar 

  • Van Noorden CJF, Frederiks WM (1993) Cerium methods for light and electron microscopical histochemistry. J Microsc 171:3–16

    PubMed  Google Scholar 

  • Wu G, Shortt BJ, Lawrence EB, León J, Fitzsimmons KC, Levine EB, Raskin I, Shah DM (1997) Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115:427–435

    CAS  PubMed  Google Scholar 

  • Xing T, Higgins VJ, Blumwald E (1997) Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells. Plant Cell 9:249–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang XG, Coté GG, Crain RC (2002) Involvement of phosphoinositide turnover in tracheary element differentiation in Zinnia elegans L. cells. Planta 215:312–318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Fundación Séneca (project # PI-70/00615/FS/01) and MCYT (BOS2002-03550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ros Barceló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ros Barceló, A. Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta 220, 747–756 (2005). https://doi.org/10.1007/s00425-004-1394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1394-3

Keywords

Navigation