Skip to main content
Log in

The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

abi:

Abscisic acid insensitive

DS:

Drought stress

DT:

Drought tolerance

HR:

Hypersensitive response

SAR:

Systemic acquired resistance

References

  • Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999) Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11:1785–1798

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Murata Y, Chu SP, Nafisi M, Schroeder JI (2000) Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2. Plant Cell 14:1649–1662

    Article  Google Scholar 

  • Assmann SM (2003) OPEN STOMATAL opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci 8:151–153

    Article  CAS  PubMed  Google Scholar 

  • Bauer DW, Wei ZM, Beer SV, Collmer A (1995) Erwinia chrysanthemi harpinEch: an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol Plant-Microbe Interact 8:484–491

    CAS  PubMed  Google Scholar 

  • Berberich T, Sugawara K, Harada M, Kusano T (1995) Molecular cloning, characterization and expression of an elongation factor 1α gene in maize. Plant Mol Biol 29:611–615

    Article  CAS  PubMed  Google Scholar 

  • Bidwell RGS (1974) Plant physiology. MacMillan, New York, p 643

    Google Scholar 

  • Busk PK, Pagès M (1997) Regulation of abscisic acid-induced transcription. Plant Mol Biol 37:425–435

    Article  Google Scholar 

  • Clark MS (1997) Plant molecular biology, a laboratory manual. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241

    CAS  PubMed  Google Scholar 

  • Dayakar BV, Lin HJ, Chen CH, Ger MJ, Lee BH, Pai CH, Chow D, Huang HE, Hwang SY, Chung MC, Feng TY (2003) Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin(pss)-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Mol Biol 51:913–924

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases ATMPK4 and ATMPK6. Plant Physiol 126:1579–1587

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Beer SV (2000) Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801–811

    CAS  Google Scholar 

  • Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20:207–215

    Article  CAS  PubMed  Google Scholar 

  • Dong H-P, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong H (2004) Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 136:3628–3638

    Article  Google Scholar 

  • El-Maarouf H, Barny MA, Rona JP, Bouteau F (2001) Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett 25:82–84

    Article  Google Scholar 

  • Gallie DR, Le H, Caldwell C, Browning KS (1998) Analysis of translation elongation factors from wheat during development and flowering heat shock. Biochem Biophy Res Commun 245:295–300

    Article  CAS  Google Scholar 

  • Gerhardt P (1981) Manual of methods for general bacteriology. USA American Society Microbiology, Washington

    Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126

    Article  CAS  PubMed  Google Scholar 

  • Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    Article  PubMed  Google Scholar 

  • He SY, Huang HC, Collmer A (1993) Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255–1266

    Article  CAS  PubMed  Google Scholar 

  • Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470–479

    Article  CAS  PubMed  Google Scholar 

  • Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487

    Article  CAS  PubMed  Google Scholar 

  • Kang J-Y, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  CAS  PubMed  Google Scholar 

  • Kariola T, Palomaki TA, Brader G, Palva ET (2003) Erwinia carotovora subsp. carotovora and Erwinia-derived elicitors HrpN and PehA trigger distinct but interacting defense responses and cell death in Arabidopsis. Mol Plant-Microbe Interact 16:179–187

    CAS  PubMed  Google Scholar 

  • Khedr AH, Abbas MA, Wahid AA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562

    Article  CAS  PubMed  Google Scholar 

  • Kim JF, Beer SV (1998) HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol 180:5203–5210

    CAS  PubMed  Google Scholar 

  • Kim JF, Beer SV (2000) hrp genes and harpins of Erwinia amylovora: a decade of discovery. In: Vanneste JL (ed) Fire blight and its causative agent, Erwinia amylovora. CAB International, Wallingford, pp 141–162

    Google Scholar 

  • Kim HJ, Kim YK, Park JY, Kim J (2002) Light signaling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J 29:693–704

    Article  CAS  PubMed  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signaling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Klessig DF, Nurnberger T (2001a) A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079–1093

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Klusener B, Tsiamis G, Stevens C, Neyt C, Tampakaki AP, Panopoulos NJ, Noller J, Weiler EW, Cornelis GR, Mansfield JW, Nurnberger T (2001b) HrpZPsph from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci USA 98:289–294

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  CAS  PubMed  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    Article  CAS  PubMed  Google Scholar 

  • Leung J, Merlot S, Gosti F, Bertauche N, Blatte MR, Giraudat J (1998) The role of ABI1 in abscisic acid signal transduction: from gene to cell. Symp Soc Exp Biol 51:65–71

    CAS  PubMed  Google Scholar 

  • Moore TC (1981) Research experiences in plant physiology, a laboratory manual, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nambara E, Kawaide H, Kamiya Y, Naito S (1998) Characterization of an Arabidopsis thaliana mutant that has a defect in ABA accumulation: ABA-dependent and ABA-independent accumulation of free amino acids during dehydration. Plant Cell Physiol 39:853–858

    CAS  PubMed  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Peng J-L, Dong H-S, Dong H-P, Delaney TP, Bonasera BM, Beer SV (2003) Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol Mol Plant Pathol 62:317–326

    Article  CAS  Google Scholar 

  • Peng J-L, Bao Z-L, Ren H-Y, Wang J-S, Dong H-S (2004a) Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94:1048–1055

    CAS  Google Scholar 

  • Peng J-L, Bao Z-L, Li P, Chen G-Y, Wang J-S, Dong H (2004b) Harpinxoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis. Acta Bot Sin 21:1083–1090

    Google Scholar 

  • Price J, Li TC, Kang SG, Na JK, Jang JC (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424–1438

    Article  CAS  PubMed  Google Scholar 

  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139:1393–1409

    CAS  PubMed  Google Scholar 

  • Savoure A, Hua XJ, Bertauche N, Van Montagu M, Verbruggen N (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet 254:104–109

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330

    Article  CAS  PubMed  Google Scholar 

  • Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE (2001) Common and contrasting themes of plant and animal diseases. Science 292:2285–2289

    Article  CAS  PubMed  Google Scholar 

  • Strobel RN, Gopalan JS, Kuc JA, He SY (1996) Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J 9:431–439

    Article  CAS  Google Scholar 

  • Tampakaki AP, Panopoulos NJ (2000) Elicitation of hypersensitive cell death by extracellularly targeted HrpZPsph produced in planta. Mol Plant-Microbe Interact 13:1366–1374

    CAS  PubMed  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637

    Article  CAS  PubMed  Google Scholar 

  • Wei Z-M, Lacy R-J, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88

    CAS  PubMed  Google Scholar 

  • Wilkins MB (1984) Advanced plant physiology. Pitman, London

    Google Scholar 

  • Wu Y, Sanchez JP, Lopez-Molina L, Himmelbach A, Grill E, Chua NH (2003) The abi1-1 mutation blocks ABA signaling downstream of cADPR action. Plant J 34:307–315

    CAS  PubMed  Google Scholar 

  • Zhang ZL, Zhai WJ (2003) Laboratory manual for plant physiology, 3rd edn (in Chinese). Higher Edu Press, Beijing, pp 5–7

    Google Scholar 

Download references

Acknowledgements

We thank Dr Steven V. Beer and Ms Jean M. Bonasera (Cornell University, Ithaca, NY) for carefully reading and revising the earlier version of this article, the two anonymous reviewers for their critical comments and suggestions on the manuscript, and Arabidopsis Biological Resource Center (Ohio State University, Columbus, OH, USA) for supplying seeds used in this study. This study was supported by the China National Natural Science Foundation (30370969) and the Ministry of Education of China Century-Across Talent Award (Jiao-Ke-Han no. 48-2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansong Dong.

Additional information

Hong-Ping Dong and Haiqin Yu contributed equally to this study and are regarded as joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, HP., Yu, H., Bao, Z. et al. The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221, 313–327 (2005). https://doi.org/10.1007/s00425-004-1444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1444-x

Keywords

Navigation