Skip to main content
Log in

Secondary cell-wall assembly in flax phloem fibres: role of galactans

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Non-lignified fibre cells (named gelatinous fibres) are present in tension wood and the stems of fibre crops (such as flax and hemp). These cells develop a very thick S2 layer within the secondary cell wall, which is characterised by (1) cellulose microfibrils largely parallel to the longitudinal axis of the cell, and (2) a high proportion of galactose-containing polymers among the non-cellulosic polysaccharides. In this review, we focus on the role of these polymers in the assembly of gelatinous fibres of flax. At the different stages of fibre development, we analyse in detail data based on sugar composition, linkages of pectic polymers, and immunolocalisation of the β-(1→4)-galactans. These data indicate that high molecular-mass gelatinous galactans accumulate in specialised Golgi-derived vesicles during fibre cell-wall thickening. They consist of RG-I-like polymers with side chains of β-(1→4)-linked galactose. Most of them are short, but there are also long chains containing up to 28 galactosyl residues. At fibre maturity, two types of cross-linked galactans are identified, a C–L structure that resembles the part of soluble galactan with long side chains and a C–S structure with short chains. Different possibilities for soluble galactan to give rise to C–L and C–S are analysed. In addition, we discuss the prospect for the soluble galactan in preventing the newly formed cellulose chains from completing immediate crystallisation. This leads to a hypothesis that firstly the secretion of soluble galactans plays a role in the axial orientation of cellulose microfibrils, and secondly the remodelling and cross-linking of pectic galactans are linked to the dehydration and the assembly of S2 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ageeva MV, Petrovská B, Kieft H, Salnikov VV, Snegireva AV, van Dam JEG, Emons AMC, Gorshkova TA, van Lammeren AAM (2005) Intrusive growth of flax phloem fibers is of intercalary type. Planta (in press). Online ISSN: 0032-0935 (Paper) 1432-2048 (Online). DOI 10.1007/s00425-005-1536-2

  • Andème-Onzighi C, Girault R, His I, Morvan C, Driouich A (2000) Immunocytochemical characterization of early-developing flax fiber cells. Protoplasma 213:235–245

    Article  Google Scholar 

  • Anderson DB (1926) A microchemical study of the structure and development of flax fibers. Am J Bot 14:187–220

    Article  Google Scholar 

  • Baldwin TC, McCann MC, Roberts K (1993) A novel hydroxyproline-deficient arabinogalactan protein secreted by suspension-cultured cells of Daucus carota. Plant Physiol 103:115–123

    PubMed  CAS  Google Scholar 

  • Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites Part A 33:939–948

    Article  Google Scholar 

  • Davis EA, Derouet C, Hervé du Penhoat C, Morvan C (1990) Isolation and an N.M.R. study of pectins from flax (Linum usitatissimum L.). Carbohydr Res 197:205–215

    Article  CAS  Google Scholar 

  • van Dam JEG, Gorshkova TA (2003) Plant growth and development: plant fiber formation. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of applied plant sciences. Academic, New York, pp 87–96

    Google Scholar 

  • Derminot J, Tasdhomme M (1977) Mise au point d’une méthode d’analyse chromatographique des sucres et exemples d’application aux fibres techniques du lin. Bull Scient ITF 6:179–189

    CAS  Google Scholar 

  • Esau K (1977) Anatomy of seed plants. Wiley, New York

    Google Scholar 

  • Girault R (1999) Caractérisation biochimique des polymères incrustant les parois secondaires des fibres de lin. PhD Thesis, University of Rouen, p 132

  • Girault R, Bert F, Rihouey C, Jauneau A, Morvan C, Jarvis M (1997) Galactans and cellulose in flax fibres: putative contributions to the tensile strength. Int J Biol Macromol 21:179–188

    Article  PubMed  CAS  Google Scholar 

  • Girault R, His I, Andème-Onzighi C, Dirouich A, Morvan C (2000) Identification and partial characterization of proteins and proteoglycans encrusting the secondary cell-walls of flax fibres. Planta 211:256–264

    Article  PubMed  CAS  Google Scholar 

  • Gorshkova TA, Wyatt SE, Chemikosova SB, Salnikov VV, Gibeaut DM, Ibragimov MR, Lozovaya VV, Carpita NC (1996) Cell-wall polysaccharides of developing flax plants. Plant Physiol 110:721–729

    PubMed  CAS  Google Scholar 

  • Gorshkova TA, Chemikosova SB, Lozovaya VV, Carpita NC (1997) Turnover of galactans and other cell-wall polysaccharides during development of flax plants. Plant Physiol 114:723–729

    PubMed  CAS  Google Scholar 

  • Gorshkova TA, Sal’nikov VV, Chemikosova SB, Ageeva MV, Pavlencheva NV, van Dam JEG (2003) The snap point: a transition point in Linum usitatissimum bast fiber development. Ind Crops Products 18:213–221

    Article  Google Scholar 

  • Gorshkova TA, Chemikosova SB, Salnikov VV, Pavlencheva NV, Gurjanov OP, Stolle-Smits T, van Dam JEG (2004) Occurrence of cell-specific galactan is coinciding with bast fibre developmental transition in flax. Ind Crops Products 19:217–224

    Article  CAS  Google Scholar 

  • Gorshkova TA, Ageeva MV, Chemikosova SB, Salnikov VV (2005) Tissue-specific processes during cell-wall formation in flax fiber. Plant Biosystems 139:88–92

    Google Scholar 

  • Goubet F, Bourlard T, Girault R, Alexandre C, Vandevelde MC, Morvan C (1995) Structural features of galactans from flax fibres. Carbohydr Polymers 27:221–227

    Article  CAS  Google Scholar 

  • van Hazendonk JM, Reinerink EJM, de Waard P, van Dam JEG (1996) Structural analysis of acetylated hemicellulose polysaccharides from fibre flax (Linum usitatissimum L.) Carbohydr Res 291:141–154

    Article  Google Scholar 

  • His I, Andème-Onzighi C, Morvan C, Driouich A (2001) Microscopical analysis of mature flax fibers embedded in London Resin White: immunogold localization of cell-wall matrix polysaccharides. J Histochem Cytochem 49:1525–1535

    PubMed  CAS  Google Scholar 

  • Jauneau A, Morvan C, Lefebvre F, Demarty M, Ripoll C, Thellier M (1992) Differential extractability of calcium and pectic substances in different wall regions of epicotyl cells in young flax plants. J Histochem Cytochem 40:1183–1189

    PubMed  CAS  Google Scholar 

  • Jauneau A, Cabin-Flaman A, Morvan C, Ripoll C, Thellier M (1994) Polysaccharide distribution in the cellular junctions of immature fibre cells of flax seedlings. Histochem J 26:226–232

    PubMed  CAS  Google Scholar 

  • Joseleau JP, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterization of lignin in the G-layer tension wood fibres of Populus deltoides. Planta 219:338–345

    Article  PubMed  CAS  Google Scholar 

  • McDougall GJ (1993) Isolation and partial characterisation of the non-cellulosic polysaccharides of flax fibre. Carbohydr Res 241:227–236

    Article  CAS  Google Scholar 

  • McNeil M, Darvill AG, Albersheim P (1980) Structure of plant cell walls: X. Rhamnogalacturonan I, a structurally complex polysaccharide in the walls of suspension cultured sycamore cells. Plant Physiol 66:1128–1134

    PubMed  CAS  Google Scholar 

  • Meier H (1962) Studies on the galactan from tension wood of beech (Fagus silvatica L.). Acta Chem Scand 16:2275–2283

    Article  CAS  Google Scholar 

  • Mooney C, Stolle-Smits T, Schols H, de Jong E (2001) Analysis of retted and non retted flax fibres by chemical and enzymatic means. J Biotechnol 89:205–216

    Article  PubMed  CAS  Google Scholar 

  • Morvan C, Andème-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Building flax fibres: more than brick in the walls. Plant Physiol Biochem 41:935–944

    Article  CAS  Google Scholar 

  • Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leple JC, Laurans F, Lapierre C, Ruel K (2004) Lignification and tension wood. CR Biol 327:889–901

    Article  CAS  Google Scholar 

  • Roland J-C, Mosiniak M, Roland D (1995) Dynamique du positionnement de la cellulose dans les parois des fibres textiles du lin (Linum usitatissimum). Acta Bot Gallica 142:463–484

    Google Scholar 

  • Ruel K, Barnoud F (1978) Determination quantitative du bois de tension par une methode analytique: validité du critere galactose. Holzforschung 32:174–178

    Article  Google Scholar 

  • Salnikov VV, Ageeva MV, Yumashev VN, Lozovaya VV (1993) The ultrastructure of bast fibers. Plant Physiol (in Russian) 40:458–464

    Google Scholar 

  • Sotton M, Monrocq R (1977) Evolution de la structure et des propriétés des fibres de lin en mèches au cours des traitements de dégommage et d’ennoblissement. Bull Sci ITF 6:21–43

    CAS  Google Scholar 

  • Wang HH, Drummont JG, Reath SM, Hunt K, Watson PA (2001) An improved fibril angle measurement method for wood fibres. Wood Sci Technol 34:493–503

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the program ‘Molecular and Cell Biology’ RAS and by grant 05-04-48906 of RFBR. We thank Dr. M. Ageeva and Dr. V. Salnikov (Kazan Institute of Biochemistry and Biophysics) for providing unpublished photos for Figs. 1 and 2. We are grateful to Victor Norris for helpful discussion and for English improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine Morvan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorshkova, T., Morvan, C. Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta 223, 149–158 (2006). https://doi.org/10.1007/s00425-005-0118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0118-7

Keywords

Navigation