Skip to main content
Log in

Lignification in the flax stem: evidence for an unusual lignin in bast fibers

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In the context of our research on cell wall formation and maturation in flax (Linum usitatissimum L) bast fibers, we (1) confirmed the presence of lignin in bast fibers and (2) quantified and characterized the chemical nature of this lignin at two developmental stages. Histochemical methods (Weisner and Maüle reagents and KMnO4-staining) indicating the presence of lignin in bast fibers at the light and electron microscope levels were confirmed by chemical analyses (acetyl bromide). In general, the lignin content in flax bast fibers varied between 1.5% and 4.2% of the dry cell wall residues (CWRs) as compared to values varying between 23.7% and 31.4% in flax xylem tissues. Immunological and chemical analyses (thioacidolysis and nitrobenzene oxidation) indicated that both flax xylem- and bast fiber-lignins were rich in guaiacyl (G) units with S/G values inferior to 0.5. In bast fibers, the highly sensitive immunological probes allowed the detection of condensed guaiacyl-type (G) lignins in the middle lamella, cell wall junctions, and in the S1 layer of the secondary wall. In addition, lower quantities of mixed guaiacyl–syringyl (GS) lignins could be detected throughout the secondary cell wall. Chemical analyses suggested that flax bast-fiber lignin is more condensed than the corresponding xylem lignin. In addition, H units represented up to 25% of the monomers released from bast-fiber lignin as opposed to a value of 1% for the corresponding xylem tissue. Such an observation indicates that the structure of flax bast-fiber lignin is significantly different from that of the more typical ‘woody plant lignin’, thereby suggesting that flax bast fibers represent an interesting system for studying an unusual lignification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AGP:

Arabinogalactan protein

CWR:

Cell wall residue

G:

Guaiacyl unit

GRP:

Glycine-rich protein

H:

p-hydroxyphenyl unit

HPLC:

High pressure liquid chromatography

S:

Syringyl unit

TEM:

Transmission electron microscopy

References

  • Akin DE, Gamble GR, Morrison WH, Rigsby LL, Dodd RB (1996) Chemical and structural analysis of fibre and core tissues from flax. J Sci Food Agr 72:155–165

    CAS  Google Scholar 

  • Atanassova R, Favet N, Martz F, Chabbert B, Tollier MT, Monties B, Fritig B, Legrand M (1995) Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation. Plant J 8:465–477

    CAS  Google Scholar 

  • Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A-Appl Sci Manuf 33:939–948

    Google Scholar 

  • Beaugrand J, Crônier D, Debeire P, Chabbert B (2004) Arabinoxylan and hydroxycinnamate content of wheat bran in relation to endoxylanase susceptibility. J Cereal Sci 40:223–230

    CAS  Google Scholar 

  • Billa E, Tollier MT, Monties B (1996) Characterisation of the monomeric composition of in situ wheat straw lignins by alkaline nitrobenzene oxidation: effect of temperature and reaction time. J Sci Food Agr 72: 250–256

    CAS  Google Scholar 

  • Cathala B, Chabbert B, Joly C, Dole P, Monties B (2001) Synthesis, characterisation and water sorption properties of pectin-dehydrogenation polymer (lignin model compound) complex. Phytochemistry 56:195–202

    CAS  PubMed  Google Scholar 

  • Chang HM, Allan GG (1971) Oxidation. In: Sarkanen KV, Ludwig CH (eds) Lignins : occurence, formation, structure and reactions. Wiley, New York, pp 433–485

    Google Scholar 

  • Chase M, The Angiosperm Phylogeny Group (1998) An ordinal classification for the families of flowering plants. Ann Misso Botanical Garden 85:531–553

    Google Scholar 

  • Clifford MN (1974) Specificity of acidic phloroglucinol reagents. J Chromatogr 94:321–324

    CAS  Google Scholar 

  • Day A, Dehorter B, Neutelings G, Czeszak X, Chabbert B, Belingheri L, David H (2001) Caffeoyl-coenzyme A 3-O-methyltransferase enzyme activity, protein and transcript accumulation in flax (Linum usitatissimum) stem during development. Physiol Plant 113:275–284

    CAS  PubMed  Google Scholar 

  • Day A, Addi M, Kim W, David H, Bert F, Mesnage P, Rolando C, Chabbert B, Neuteulings G, Hawkins S (2005) ESTs from the fibre-bearing stem tissues of flax (Linum usitatissimum L): expression analyses of sequences related to cell wall development. Plant Biol 7:23–32

    Article  CAS  PubMed  Google Scholar 

  • Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, Heidelberg, New York, pp 33–61

    Google Scholar 

  • Effland MJ (1977) Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi J 60:143–144

    CAS  Google Scholar 

  • Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–27

    CAS  Google Scholar 

  • Gamble GR, Snook ME, Henriksson G, Akin DE (2000) Phenolic constituents in flax bast tissue and inhibition of cellulase and pectinase. Biotechnol Lett 22:741–746

    CAS  Google Scholar 

  • Girault R, Bert F, Rihouey C, Jauneau A, Morvan C, Jarvis M (1997) Galactans and cellulose in flax fibres: putative contributions to the tensile strength. Int J Biol Macromol 21:179–88

    CAS  PubMed  Google Scholar 

  • Girault R, His I, AndemeOnzighi C, Driouich A, Morvan C (2000) Identification and partial characterization of proteins and proteoglycans encrusting the secondary cell walls of flax fibres. Planta 211:256–264

    CAS  PubMed  Google Scholar 

  • Gorshkova TA, Salnikov VV, Pogodina NM, Chemikosova SB, Yablokova EV, Ulanov AV, Ageeva MV, VanDam JEG, Lozovaya VV (2000) Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L) stem tissues. Ann Bot 85:477–486

    CAS  Google Scholar 

  • Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barriere Y, Lapierre C, Jouanin L (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217:218–28

    CAS  PubMed  Google Scholar 

  • Grünwald C, Ruel K, Kim YS, Schmitt U (2002) On the cytochemistry of cell wall formation in poplar trees. Plant Biol 4:13–21

    Google Scholar 

  • Hatfield RD, Grabber J, Ralph J, Brei K (1999) Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J Agric Food Chem 47:628–32

    CAS  PubMed  Google Scholar 

  • Iiyama K, Pant R (1988) The mechanism of the Maüle color reaction. Introduction of methylated syringyl nuclei into softwood lignin. Wood Sci Technol 22:167–175

    CAS  Google Scholar 

  • Iiyama K, Wallis AFA (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agr 51:145–161

    CAS  Google Scholar 

  • Iiyama K, Lam TBT, Stone BA (1990) Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochem 29:733–737

    CAS  Google Scholar 

  • Islam A, Sarkanen K (1993) The isolation and characterization of lignins of jute (Corchorus capsularis). Holzforschung 47:123–132

    CAS  Google Scholar 

  • Joseleau JP, Ruel K (1997) Study of lignification by noninvasive techniques in growing maize internodes An investigation by Fourier transform infrared cross-polarization-magic angle spinning 13 C-nuclear magnetic resonance spectroscopy and immunocytochemical transmission electron microscopy. Plant Physiol 114:1123–33

    CAS  PubMed  Google Scholar 

  • Jung H, Valdez F, Hatfield R, Blanchette R (1992) Cell wall composition and degradability of forage stems following chemical and biological delignification. J Sci Food Agric 58:347–355

    CAS  Google Scholar 

  • Jurasek L (1996) Morphology of computer-modeled lignin structure: fractal dimensions, orientation and porosity. J Pulp Pap Sci 22: 376–380

    Google Scholar 

  • Kerr AI, Goring DAI (1975) The ultrastructural arrangement of wood cell wall. Cell Chem Technol 9:563–573

    Google Scholar 

  • Kotelnikova NE, Panarin EF, Serimaa R, Paakkari T, Sukhanova TE, Gribanov AV (2000) Study of flax fibre structure by Waxs, IR and 13 C NMR spectroscopy, and SEM. In: Kennedy J, Phillips GO, Williams PA (eds) Cellulosic pulps, fibres and materials. Woodhead publishing Ltd Abington Hall, Cambridge, pp 169–179

    Google Scholar 

  • Lam TBT, Iiyama K, Stone BA (1990) Lignin in wheat internodes. Part 2: Alkaline nitrobenzene oxidation by wheat straw lignin and its fractions. J Sci Food Agric 51:493–506

    CAS  Google Scholar 

  • Lapierre C (1993) Application of new methods for the investigation of lignin structure. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASA CSSA SSSA, Madison, pp 133–166

    Google Scholar 

  • Love GD, Snape CE, Jarvis MC, Morrison IM (1994) Determination of phenolic structures in flax fibre by solid-state 13 C NMR. Phytochem 35:489–491

    CAS  Google Scholar 

  • McDougall GJ (1992) Changes in cell wall-associated peroxidases during the lignification of flax fibres. Phytochem 31:3385–3389

    CAS  Google Scholar 

  • Meijer WJM, Vertregt N, Rutgers B, Vandewaart M (1995) The pectin content as a measure of the retting and rettability of flax. Ind Crops Products 4:273–284

    CAS  Google Scholar 

  • Meshitsuka G, Nakano J (1979) Studies on the mechanism of lignin color reaction (XIII): Maüle color reaction (9). Mokuzai Gakkaishi 25: 588–594

    CAS  Google Scholar 

  • Monties B (1984) Dosage de la lignine insoluble en milieu acide: influence du prétraitement par hydrolyse acide sur la lignine Klason de bois et de paille. Agronomie 4:387–392

    Google Scholar 

  • Monties B (1989) Lignins. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry. Academic, New York, pp 113–157

    Google Scholar 

  • Morrison IM (1976) New laboratory methods for predicting the nutritive value of forage crops. World Review of Animal Production XII:75–82

    Google Scholar 

  • Morrison WH, Akin DE (2001) Chemical composition of components comprising bast tissue in flax. J Agr Food Chem 49:2333–2338

    CAS  Google Scholar 

  • Morrison WH, Akin DE, Archibald DD, Dodd RB, Raymer PL (1999) Chemical and instrumental characterization of maturing kenaf core and bast. Ind Crops Products 10:21–34

    CAS  Google Scholar 

  • Morrison WH, Himmelsbach DS, Akin DE, Evans JD (2003) Chemical and spectroscopic analysis of lignin in isolated flax fibers. J Agri Food Chem 51:2565–2568

    CAS  Google Scholar 

  • Neto CP, Seca A, Fradinho D, Coimbra MA, Domingues F, Evtuguin D, Silvestre A, Cavaleiro JAS (1996) Chemical composition and structural features of the macromolecular components of Hibiscus cannabinus grown in Portugal. Ind Crops Products 5:189–196

    Article  Google Scholar 

  • Ruel K, Faix O, Joseleau J (1994) New immunogold probes for studying the distribution of the different lignin types during plant cell wall biogenesis. J Trace Microprobe Tech 12:247–265

    CAS  Google Scholar 

  • Ruel K, Burlat V, Joseleau JP (1999) Relationship between ultrastructural topochemistry of lignin and wood properties. Iawa J 20:203–211

    Google Scholar 

  • Ruel K, Montiel MD, Goujon T, Jouanin L, Burlat V, Joseleau JP (2002) Interrelation between lignin deposition and polysaccharide matrices during the assembly of plant cell walls. Plant Biol 4:2–8

    CAS  Google Scholar 

  • Sharma HSS, Faughey G, Lyons G (1999) Comparison of physical, chemical, and thermal characteristics of water-, dew-, and enzyme-retted flax fibers. J Appl Polym Sci 74:139–143

    CAS  Google Scholar 

  • Terashima N, Fukushima K, He L-F, Takabe K (1993) Comprehensive model of the lignified plant cell wall. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASA-CSSA-SSSA, Madison, pp 247–270

    Google Scholar 

  • Terashima N, Nakashima J, Takabe K (1998) Proposed structure for protolignin in plant cell walls. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis. American Chemical Society, Washington DC, pp 180–193

    Google Scholar 

  • Touzel JP, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterization of dehydrogenation polymers in glucunoacetobacter xylinus cellulose and cellulose/pectine composite. J Agr Food Chem 51:981–986

    CAS  Google Scholar 

  • Vallet C, Chabbert B, Czaninski Y, Monties B (1996) Histochemistry of lignin deposition during sclerenchyma differentiation in alfalfa stems. Ann Bot 78:625–632

    CAS  Google Scholar 

  • Vallet C, Lemaire G, Monties B, Chabbert B (1998) Cell wall fractionation of alfalfa stem in relation to internode development: biochemistry aspect. J Agr Food Chem 46:3458–3467

    CAS  Google Scholar 

  • Vignon M, Dupeyre D, Garciajaldon C (1995) Steam explosion of woody hemp chènevotte. Int J Biol Macromol 17:395–404

    CAS  PubMed  Google Scholar 

  • Yokoyama T, Kadla JF, Chang HM (2002) Microanalytical method for the characterization of fiber components and morphology of woody plants. J Agr Food Chem 50:1040–1044

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. François Bert (Institut Technique de Lin, Paris) for his professional advice on Flax plants. A. Day thanks the Regions Champagne-Ardennes and Nord-Pas de Calais for financial support. This work was carried out in the context of the Regional Project ‘Etude de la modulation de la cohésion intercellulaire chez le lin’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Chabbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, A., Ruel, K., Neutelings, G. et al. Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta 222, 234–245 (2005). https://doi.org/10.1007/s00425-005-1537-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-1537-1

Keywords

Navigation