Skip to main content
Log in

New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana

  • Progress Report
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In spite of their silent and sessile life, plants are dynamic organisms that have developed advanced defence strategies in their adaptation to the pressure of herbivores and pathogens. Natural plant products play an important role as chemical weapons in this warfare. Characteristic of cruciferous plants is the synthesis of nitrogen- and sulphur-rich compounds, such as glucosinolates (Mikkelsen et al. 2002) and indole alkaloids (Pedras et al. 2000). Glucosinolates are believed to be largely non-toxic, but upon tissue disruption, they are hydrolyzed by endogenous β-thioglucosidases (myrosinases) (Rask et al. 2000) to primarily isothiocyanates and nitriles, which have many biological activities. These include not only important roles as repellents against herbivorous insects and microorganisms, but also as volatile attraction of specialized insects (Wittstock and Halkier 2002). For humans, these compounds serve as cancer-preventive agents, biopesticides, and flavor compounds (Talalay and Fahey 2001). Indole alkaloids are phytoalexins and production of specific alkaloids is usually limited to only a few species. Cruciferous plants include the model plant Arabidopsis, which produces the indole alkaloid camalexin. This review will focus on the central role of indole-3-acetaldoxime (IAOx) in the biosynthesis of indole glucosinolates, camalexin, and the phytohormone IAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bak S, Nielsen HL, Halkier BA (1998) The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Plant Mol Biol 38:725–734

    Google Scholar 

  • Brader G, Tas E, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol 126:849–860

    Google Scholar 

  • Denby KJ, Kumar P, Kliebenstein DJ (2004) Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J 38:473–486

    Google Scholar 

  • Glawischnig E, Hansen BG, Olsen CE, Halkier BA (2004) Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc Natl Acad Sci USA 101:8245–8250

    Article  CAS  PubMed  Google Scholar 

  • Griffiths DW, Deighton N, Birch AN, Patrian B, Baur R, Stadler E (2001) Identification of glucosinolates on the leaf surface of plants from the Cruciferae and other closely related species. Phytochemistry 57:693–700

    Article  CAS  PubMed  Google Scholar 

  • Grubb DC, Zipp BJ, Ludwig-Muller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908

    Article  CAS  PubMed  Google Scholar 

  • Hagemeier J, Schneider B, Oldham NJ, Hahlbrock K (2001) Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proc Natl Acad Sci USA 98:753–758

    Article  CAS  PubMed  Google Scholar 

  • Heck S, Grau T, Buchala A, Metraux JP, Nawrath C (2003) Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis–Pseudomonas syringae pv. tomato interaction. Plant J 36:342–352

    Google Scholar 

  • Helmlinger J, Rausch T, Hilgenberg W (1985) Metabolism of 14C-indole-3-acetaldoxime by hypocotyls of Chinese cabbage. Phytochemistry 24:2497–2502

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Gershenzon J, Mitchell-Olds T (2001) Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159:359–370

    CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Figuth A, Mitchell-Olds T (2002) Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana. Genetics 161:1685–1696

    CAS  PubMed  Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

    Google Scholar 

  • Mikkelsen MD, Petersen BL, Olsen CE, Halkier BA (2002) Biosynthesis and metabolic engineering of glucosinolates. Amino Acids 22:279–295

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131:298–308

    Google Scholar 

  • Mikkelsen MD, Naur P, Halkier BA (2004) Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770–777

    Google Scholar 

  • Normanly J, Grisafi P, Fink GR, Bartel B (1997) Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell 9:1781–1790

    Google Scholar 

  • Pedras MS, Okanga FI, Zaharia IL, Khan AQ (2000) Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochemistry 53:161–176

    Article  CAS  PubMed  Google Scholar 

  • Pedras MS, Nycholat CM, Montaut S, Xu Y, Khan AQ (2002) Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. Phytochemistry 59:611–625

    Article  CAS  PubMed  Google Scholar 

  • Piotrowski M, Schemenewitz A, Lopukhina A, Muller A, Janowitz T, Weiler EW, Oecking C (2004) Desulfo-glucosinolate sulfotransferases from arabidopsis thaliana catalyzing the final step in biosynthesis of the glucosinolate core structure. J Biol Chem 279:50717–50725

    Article  CAS  PubMed  Google Scholar 

  • Rask L, Andreasson E, Ekbom A, Eriksson S, Panfappidan B, Meijel J (2000) Myrosinase: gene family evolution and defence in Brassicaceae. Plant Mol Biol 42:93–113

    Article  CAS  PubMed  Google Scholar 

  • Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027S–3033S

    CAS  PubMed  Google Scholar 

  • Tan JW, Bednarek P, Liu HK, Schneider B, Svatos A, Hahlbrock K (2004) Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry 65:691–699

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Nelissen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163–171

    Google Scholar 

  • Tobena-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol JN, Souer E, Koes R (2002) FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev 16:753–763

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin mono-oxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112

    Article  CAS  PubMed  Google Scholar 

  • Zhou N, Tootle TL, Glazebrook J (1999) Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 mono-oxygenase. Plant Cell 11:2419–2428

    Google Scholar 

  • Zook M, Hammerschmidt R (1997) Origin of the thiazole ring of camalexin, a phytoalexin from Arabidopsis thaliana. Plant Physiol 113:463–468

    Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work we could not cite because of space constraints. The Danish National Research Foundation is acknowledged for its support to PlaCe (Center of Molecular Plant Physiology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Ann Halkier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, B.G., Halkier, B.A. New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana. Planta 221, 603–606 (2005). https://doi.org/10.1007/s00425-005-1553-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-1553-1

Keywords

Navigation