Skip to main content
Log in

Tissue-specific accumulation of carotenoids in carrot roots

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Raman spectroscopy can be used for sensitive detection of carotenoids in living tissue and Raman mapping provides further information about their spatial distribution in the measured plant sample. In this work, the relative content and distribution of the main carrot (Daucus carota L.) root carotenoids, α-, β-carotene, lutein and lycopene were assessed using near-infrared Fourier transform Raman spectroscopy. The pigments were measured simultaneously in situ in root sections without any preliminary sample preparation. The Raman spectra obtained from carrots of different origin and root colour had intensive bands of carotenoids that could be assigned to β-carotene (1,520 cm−1), lycopene (1,510 cm−1) and α-carotene/lutein (1,527 cm−1). The Raman mapping technique revealed detailed information regarding the relative content and distribution of these carotenoids. The level of β-carotene was heterogeneous across root sections of orange, yellow, red and purple roots, and in the secondary phloem increased gradually from periderm towards the core, but declined fast in cells close to the vascular cambium. α-carotene/lutein were deposited in younger cells with a higher rate than β-carotene while lycopene in red carrots accumulated throughout the whole secondary phloem at the same level. The results indicate developmental regulation of carotenoid genes in carrot root and that Raman spectroscopy can supply essential information on carotenogenesis useful for molecular investigations on gene expression and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NIR:

Near-infrared

FT:

Fourier transform

References

  • Alasalvar C, Grigor JM, Zhang D, Quantick PC, Shahidi F (2001) Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J Agric Food Chem 49:1410–1416

    Article  PubMed  CAS  Google Scholar 

  • Ayers JE, Fishwick MJ, Land DG, Swain T (1964) Off-flavor of dehydrated carrot stored in oxygen. Science 203:81–82

    CAS  Google Scholar 

  • Baranska M, Schulz H (2005) Spatial distribution of polyacetylenes in carrot root. Analyst 130:855–859

    Article  PubMed  CAS  Google Scholar 

  • Baranska M, Schulz H, Baranski R, Nothnagel T, Christensen L (2005) In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots. J Agric Food Chem 53:6565–6571

    Article  PubMed  CAS  Google Scholar 

  • Baranski R, Baranska M, Schulz H (2005) Changes in carotenoid content and their distribution in fresh plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta 222:448–457

    Article  PubMed  CAS  Google Scholar 

  • Bouvier F, Isner J-C, Dogbo O, Camara B (2005) Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci 10:187–194

    Article  PubMed  CAS  Google Scholar 

  • Buishand JG, Gabelman WH (1979) Investigations on the inheritance of color and carotenoid content in phloem and xylem of carrot root (Daucus carota L.). Euphytica 28:611–632

    Article  CAS  Google Scholar 

  • Buishand JG, Gabelman WH (1980) Studies on the inheritance of root color and carotenoids content in red × yellow and red × white crosses of carrot, Daucus carota L. Euphytica 29:241–260

    Article  CAS  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Gilmore AM, Adams WW (1996) Carotenoiods 3: In vivo function of carotenoids in higher plants. FASEB J 10:403–412

    PubMed  CAS  Google Scholar 

  • Dietz Bryant J, McCord JD, Knight-Unlu L, Erdman JW Jr (1992) Isolation and partial characterization of α- and β-carotene-containing carotenoprotein from carrot (Daucus carota L.) root chromoplasts. J Agric Food Chem 40:545–549

    Article  Google Scholar 

  • Esau K (1940) Developmental anatomy of the fleshy storage organ of Daucus carota. Hilgardia 13:175–209

    Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  PubMed  CAS  Google Scholar 

  • Frey-Wyssling A, Schwegler F (1965) Ultrastructure of chromoplasts in the carrot root. J Ultrastruct Res 13:543–559

    Article  PubMed  CAS  Google Scholar 

  • Habegger R, Schnitzler WH (2005) Aroma compounds of colored carrots (Daucus carota L. ssp. sativus Hoffm.). J Appl Bot Food Qual Angew Bot 79:130–136

    CAS  Google Scholar 

  • Horvitz MA, Simon PW, Tanumihardjo S (2004) Lycopene and β-carotene are bioavailable form lycopene red carrots in humans. Eur J Clin Nutr 58:803–811

    Article  PubMed  CAS  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  PubMed  CAS  Google Scholar 

  • Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Ibdah M, Meir A, Yosef E, Zamir D, Tadmor Y (2005) Not just colors-degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci Tech 16:407–415

    Article  CAS  Google Scholar 

  • Milicua JCG, Juarros JL, De Las Rivas J, Ibarrondo J, Gomez R (1991) Isolation of a yellow carotenoprotein from carrot. Phytochemistry 30:1535–1537

    Article  CAS  Google Scholar 

  • Nicolle C, Simon G, Rock E, Amouroux P, Rémésy C (2004) Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J Am Soc Hortic Sci 129:523–529

    CAS  Google Scholar 

  • Olsen JA (1989) Provitamin A function of carotenoids. J Nat 119:105–108

    Google Scholar 

  • Ozaki Y, Cho R, Ikegawa K, Muraishi S, Kawauchi K (1992) Potential of near-infrared Fourier transform Raman spectroscopy in food analysis. Appl Spectrosc 46:1503–1507

    Article  CAS  Google Scholar 

  • Phan CT, Hsu H (1973) Physical and chemical changes occurring in the carrot root during growth. Can J Plant Sci 53:629–634

    Article  Google Scholar 

  • Poon WYL, Goldman IL (2002) Comparative carotenoid accumulation and retention in near-isogenic rprp and RPRP inbred carrot lines. J Am Soc Hortic Sci 127:284–289

    CAS  Google Scholar 

  • Reiter M, Neidhart S, Carle R (2003) Sedimentation behaviour and turbidity of carrot juices in relation to the characteristics of their cloud particles. J Sci Food Agric 83:745–751

    Article  CAS  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107

    Article  PubMed  CAS  Google Scholar 

  • Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable Umbelliferae. CABI Publishing, New York

    Google Scholar 

  • Santos CAF, Senalik D, Simon PW (2005) Path analysis suggests phytoene accumulation is the key step limiting the carotenoid pathway in white carrot roots. Gen Mol Biol 28:287–293

    CAS  Google Scholar 

  • Santos CAF, Simon PW (2002) QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Mol Genet Genomics 268:122–129

    Article  PubMed  CAS  Google Scholar 

  • Schrader B, Klump HH, Schenzel K, Schulz H (1999) Non-destructive NIR FT Raman analysis of plants. J Mol Struct 509:201–212

    Article  CAS  Google Scholar 

  • Schulz H, Baranska M, Baranski R (2005) Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77:212–221

    Article  PubMed  CAS  Google Scholar 

  • Simon PW (1984) Carrot genetics. Plant Mol Biol Rep 2:54–63

    Article  Google Scholar 

  • Simon PW, Wolff XY (1987) Carotenes in typical and dark orange carrots. J Agric Food Chem 35:1017–1022

    Article  CAS  Google Scholar 

  • Surles RL, Weng N, Simon PW, Tanumihardjo SA (2004) Carotenoid profiles and consumer evaluation of specialty carrots (Daucus carota L.) of various colors. J Agric Food Chem 52:3417–3421

    Article  PubMed  CAS  Google Scholar 

  • Taylor M, Ramsay G (2005) Carotenoid biosynthesis in plant storage organs: recent advances and prospects for improving plant food quality. Physiol Plant 124:143–151

    Article  CAS  Google Scholar 

  • Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4:232–235

    Article  PubMed  Google Scholar 

  • Zhou JR, Gugger ET, Erdman JW Jr (1994) Isolation and partial characterisation of an 18 kDa carotenoid-protein complex from carrot roots. J Agric Food Chem 42:2386–2390

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the “Deutsche For-schungsgemeinschaft (DFG)” in Bonn, Germany (grant number: Schu 566/7-2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Malgorzata Baranska or Hartwig Schulz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranska, M., Baranski, R., Schulz, H. et al. Tissue-specific accumulation of carotenoids in carrot roots. Planta 224, 1028–1037 (2006). https://doi.org/10.1007/s00425-006-0289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0289-x

Keywords

Navigation