Skip to main content
Log in

Compositional characterization and imaging of “wall-bound” acylesters of Populus trichocarpa reveal differential accumulation of acyl molecules in normal and reactive woods

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Acylesterification is one of the common modifications of cell wall non-cellulosic polysaccharides and/or lignin primarily in monocot plants. We analyzed the cell-wall acylesters of black cottonwood (Populus trichocarpa Torr. & Gray) with liquid chromatography–mass spectrometry (LC–MS), Fourier transform-infrared (FT-IR) microspectroscopy, and synchrotron infrared (IR) imaging facility. The results revealed that the cell wall of dicotyledonous poplar, as the walls of many monocot grasses, contains a considerable amount of acylesters, primarily acetyl and p-hydroxycinnamoyl molecules. The “wall-bound” acetate and phenolics display a distinct tissue specific-, bending stress responsible- and developmental-accumulation pattern. The “wall-bound” p-coumarate predominantly accumulated in young leaves and decreased in mature leaves, whereas acetate and ferulate mostly amassed in the cell wall of stems. Along the development of stem, the level of the “wall-bound” ferulate gradually increased, while the basal level of p-coumarate further decreased. Induction of tension wood decreased the accumulation of the “wall-bound” phenolics while the level of acetate remained constant. Synchrotron IR-mediated chemical compositional imaging revealed a close spatial distribution of acylesters with cell wall polysaccharides in poplar stem. These results indicate that different “wall-bound” acylesters play distinct roles in poplar cell wall structural construction and/or metabolism of cell wall matrix components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FT-IR:

Fourier-transform infrared

IR:

Infrared

LC–MS:

Liquid chromatography–mass spectrometry

GalA:

Galacturonic acid

References

  • Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165

    Article  PubMed  CAS  Google Scholar 

  • Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137:983–997

    Article  PubMed  CAS  Google Scholar 

  • Biely P, MacKenzie CR, Puls J, Schneider H (1986) Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Biotechnology 4:731–733

    Article  CAS  Google Scholar 

  • Bunzel M, Ralph J, Lu F, Hatfield RD, Steinhart H (2004) Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains. J Agric Food Chem 52:6496–6502

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, McCann MC (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 52–108

    Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1250–1318

    Google Scholar 

  • Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59

    Article  PubMed  CAS  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol Plant Mol Biol 37:165–186

    Article  CAS  Google Scholar 

  • Fry SC, Miller JC (1989) Toward a working model of the growing plant cell wall. Phenolic cross-linking reactions in the primary cell walls of dicotyledons. In: Lewis NG, Paice MG (eds) Plant cell wall polymers, biogenesis and biodegradation, vol 399. American Chemical Society, Washington, DC, pp 33–46

    Google Scholar 

  • Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin–cell wall matrix interactions. C R Biol 327:455–465

    Article  PubMed  CAS  Google Scholar 

  • Hatfield RD, Ralph J, Grabber JH (1999) Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agric 79:403–407

    Article  CAS  Google Scholar 

  • Iiyama K, Lam TB-T, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104:315–320

    PubMed  CAS  Google Scholar 

  • Ishii T (1997a) Structure and functions of feruloylated polysaccharides. Plant Sci 127:111–127

    Article  CAS  Google Scholar 

  • Ishii T (1997b) O-acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiol 113:1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Jacobs A, Lundqvist J, Stalbrand H, Tjerneld F, Dahlmana O (2002) Characterization of water-soluble hemicelluloses from spruce and aspen employing SEC/MALDI mass spectroscopy. Carbohydr Res 337:711–717

    Article  PubMed  CAS  Google Scholar 

  • Kacuráková M, Wellner N, Ebringerová A, Hromádková Z, Wilson RH, Belton PS (1999) Characterization of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocoll 13:35–41

    Article  Google Scholar 

  • Kacuráková CP, Sasinková V, Wellner EA (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203

    Article  Google Scholar 

  • Kato Y, Nevins DJ (1984) Enzymic dissociation of zea shoot cell wall polysaccharides: IV. Dissociation of glucuronoarabinoxylan by purified endo-(1 → 4)-β-xylanase from Bacillus subtilis. Plant Physiol 75:759–765

    Article  PubMed  CAS  Google Scholar 

  • Kauppinen S, Christgau S, Kofod LV, Halkier T, Dörreich K, Dalbøge H (1995) Molecular cloning and characterization of a rhamnogalacturonan acetylesterase from Aspergillus aculeatus. J Biol Chem 270:27172–27178

    Article  PubMed  CAS  Google Scholar 

  • Lam TBT, Kadoya K, Iiyama K (2001) Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry 57:987–992

    Article  PubMed  CAS  Google Scholar 

  • Liners F, Gaspar T, Van Cutsem P (1994) Acetyl- and methyl-esterification of pectins of friable and compact sugar-beet calli: consequences for intercellular adhesion. Planta 192:545–556

    Article  CAS  Google Scholar 

  • Lu FC, Ralph J (1999) Detection and determination of p-coumaroylated units in lignins. J Agric Food Chem 47:1988–1992

    Article  PubMed  CAS  Google Scholar 

  • Lu FC, Ralph J (2002) Preliminary evidence for sinapyl acetate as a lignin monomer in kenaf. Chem Commun (Camb), pp 90–91

  • Marchessault RH, Liang CY (1962) The infrared spectra of crystalline polysaccharides. VIII. Xylans. J Polym Sci 59:357–378

    Article  CAS  Google Scholar 

  • McCann MC, Bush M, Milioni D, Sado P, Stacey NJ, Catchpole G, Defernez M, Carpita NC, Hofte H, Ulvskov P, Wilson RH, Roberts K (2001) Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 57:811–821

    Article  PubMed  CAS  Google Scholar 

  • Miller LM, Dumas P (2006) Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta 1758:846–857

    Article  PubMed  CAS  Google Scholar 

  • Mouille G, Robin S, Lecomte M, Pagant S, Hofte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-transform infrared (FT-IR) microspectroscopy. Plant J 35:393–404

    Article  PubMed  CAS  Google Scholar 

  • Pauly M, Anderson LN, Kauppinen S, Kofod LV, York WS, Albersheim P, Darvill AG (1999) A xyloglucan-specific endo-β-1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9:93–100

    Article  PubMed  CAS  Google Scholar 

  • Philippe S, Robert P, Barron C, Saulnier L, Guillon F (2006) Deposition of cell wall polysaccharides in wheat endosperm during grain development: Fourier transform-infrared microspectroscopy study. J Agric Food Chem 54:2303–2308

    Article  PubMed  CAS  Google Scholar 

  • Piber M, Koehler P (2005) Identification of dehydro-ferulic acid-tyrosine in rye and wheat: evidence for a covalent cross-link between arabinoxylans and proteins. J Agric Food Chem 53:5276–5284

    Article  PubMed  CAS  Google Scholar 

  • Pippen EL, McCready RM, Owens HS (1950) Gelation properties of partially acetylated pectins. J Am Chem Soc 72:813–816

    Article  CAS  Google Scholar 

  • Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, Schatz PF, Grabber JH, Steinhart H (2004) Peroxidase dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Rev 3:79–96

    Article  CAS  Google Scholar 

  • Renard CC, Jarvis MC (1999) Acetylation and methylation of homogalacturonans 1: optimisation of the reaction and characterization of the products. Carbohydr Polym 39:201–207

    Article  CAS  Google Scholar 

  • Robert P, Marquis ML, Barron C, Guillon F, Saulnier L (2005) FT-IR investigation of cell wall polysaccharides from cereal grains. Arabinoxylan infrared assignment. J Agric Food Chem 53:7014–7018

    Article  PubMed  CAS  Google Scholar 

  • Rombouts FM, Thibault JF (1986) Enzymatic and chemical degradation and the fine structure of pectins from sugar-beet pulp. Carbohydr Res 154:189–203

    Article  CAS  Google Scholar 

  • Schols HA, Voragen AG (1994) Occurrence of pectic hairy regions in various plant cell wall materials and their degradability by rhamnogalacturonase. Carbohydr Res 256:83–95

    Article  CAS  Google Scholar 

  • Sederoff RR, MacKay JJ, Ralph J, Hatfield RD (1999) Unexpected variation in lignin. Curr Opin Plant Biol 2:145–152

    Article  PubMed  CAS  Google Scholar 

  • Teleman A, Lundqvist J, Tjerneld F, Stålbrand H, Dahlman O (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res 329:807–815

    Article  PubMed  CAS  Google Scholar 

  • Teleman A, Nordström M, Tenkanen M, Jacobs A, Dahlman O (2003) Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydr Res 338:525–534

    Article  PubMed  CAS  Google Scholar 

  • Tenkanen M (1998) Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnol Appl Biochem Pt 1:19–24

    Google Scholar 

  • Timell TE (1964) Wood hemicelluloses. Adv Carbohydr Chem 19:247–302

    PubMed  CAS  Google Scholar 

  • Timell TE (1969) The chemical composition of tension wood. Sven Papperstidn 72:173–181

    CAS  Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Voragen AGJ, Pilnik W, Thibault J-F, Axelos MAV, Renard MGC (1998) Pectins. In: Dekker M (ed) Food polysaccharides and their applications. Academic Press, New York, pp 287–339

    Google Scholar 

  • Wende G, Fry SC (1997a) 2-O-β-D-Xylopyranosyl-(5-O-feruloyl)-L-arabinose, a widespread component of grass cell walls. Phytochemistry 44:1019–1030

    Article  CAS  Google Scholar 

  • Wende G, Fry FC (1997b) O-feruloylated, O-acetylated oligosaccharides as side-chains of grass xylans. Phytochemistry 44:1011–1018

    Article  PubMed  CAS  Google Scholar 

  • Williamson G, Faulds CB, Matthew JA, Archer DB, Morris VJ, Brownsey GJ, Ridout MJ (1990) Gelation of sugarbeet and citrus pectins using enzymes extracted from orange peel. Carbohydr Polym 13:387–397

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Gray Tuskan in Oak Ridge National Laboratory for providing additional P. trichocarpa plantlets. This work was supported by the DOE-USDA joint Plant Feedstock Genomics Program (Project No. Bo-135) and the Laboratory Directed Research and Development Program (LDRD-07-047) of Brookhaven National Laboratory under contract with Department of Energy to Chang-Jun Liu. Use of the National Synchrotron Light source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gou, JY., Park, S., Yu, XH. et al. Compositional characterization and imaging of “wall-bound” acylesters of Populus trichocarpa reveal differential accumulation of acyl molecules in normal and reactive woods. Planta 229, 15–24 (2008). https://doi.org/10.1007/s00425-008-0799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0799-9

Keywords

Navigation