Skip to main content
Log in

Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A quantitative approach to characterize lignin–carbohydrate complex (LCC) linkages using a combination of quantitative 13C NMR and HSQC 2D NMR techniques has been developed. Crude milled wood lignin (MWLc), LCC extracted from MWLc with acetic acid (LCC-AcOH) and cellulolytic enzyme lignin (CEL) preparations were isolated from loblolly pine (Pinus taeda) and white birch (Betula pendula) woods and characterized using this methodology on a routine 300 MHz NMR spectrometer and on a 950 MHz spectrometer equipped with a cryogenic probe. Structural variations in the pine and birch LCC preparations of different types (MWL, CEL and LCC-AcOH) were elucidated. The use of the high field NMR spectrometer equipped with the cryogenic probe resulted in a remarkable improvement in the resolution of the LCC signals and, therefore, is of primary importance for an accurate quantification of LCC linkages. The preparations investigated showed the presence of different amounts of benzyl ether, γ-ester and phenyl glycoside LCC bonds. Benzyl ester moieties were not detected. Pine LCC-AcOH and birch MWLc preparations were preferable for the analysis of phenyl glycoside and ester LCC linkages in pine and birch, correspondingly, whereas CEL preparations were the best to study benzyl ether LCC structures. The data obtained indicate that pinewood contains higher amounts of benzyl ether LCC linkages, but lower amounts of phenyl glycoside and γ-ester LCC moieties as compared to birch wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LCC:

Lignin–carbohydrate complex

HSQC:

Heteronuclear single quantum coherence

2D NMR:

Two-dimensional nuclear magnetic resonance (spectroscopy)

HMBC:

Hetero multinuclear quantum coherence

CEL:

Cellulolytic enzyme lignin

MWL:

Milled wood lignin

Rha:

Rhamnan

Ara:

Arabinan

Xyl:

Xylan

Man:

Mannan

Gal:

Galactan

Glc:

Glucan

AcOH:

Acetic acid

References

  • Balakshin MYu, Evtuguin DV, Pascoal Neto C, Silva AMS, Domingues PM, Amado FML (2001) Studies on lignin and lignin-carbohydrate complex by application of advanced spectroscopic techniques. In: Proceedings of the 11th ISWPC, Nice, 2001, vol 1, pp 103–110

  • Balakshin MYu, Capanema EA, Chen C-L, Gracz H (2003) Elucidation of the structures of residual and dissolved pine kraft lignin using an HMQC technique. J Agric Food Chem 51:6116–6127

    Article  PubMed  CAS  Google Scholar 

  • Balakshin MYu, Capanema EA, Chang H-M (2007a) A fraction of MWL with high concentration of lignin–carbohydrate linkages: isolation and analysis with 2D NMR spectroscopic techniques. Holzforschung 61:1–7

    Article  CAS  Google Scholar 

  • Balakshin MYu, Capanema EA, Chang H-M, Jameel H (2007b) Structural variations in pine and birch lignin–carbohydrate complex preparations. In: Proceedings of 14th International Symposium Wood Fibre Pulping Chem. CD-ROM. Durban, South Africa, June 25–28

  • Balakshin MYu, Capanema EA, Chang H-m (2008) Recent advances in isolation and analysis of lignins and lignin–carbohydrate complexes. In: Hu T (ed) Characterization of Lignocellulosics. Blackwell, Oxford, pp 148–166

    Chapter  Google Scholar 

  • Bjorkman A (1956) Studies on finely divided wood. Part I. Extraction of lignin with neutral solvents. Svensk Papperstidn 59:477–485

    CAS  Google Scholar 

  • Capanema EA, Balakshin MYu, Kadla JF (2004) A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. J Agric Food Chem 52:1850–1860

    Article  PubMed  CAS  Google Scholar 

  • Capanema EA, Balakshin MYu, Kadla JF (2005) Comprehensive NMR studies on hardwood MWL. J Agric Food Chem 53:9639–9649

    Article  PubMed  CAS  Google Scholar 

  • Capanema EA, Balakshin MYu, Katahira R, Chang H-m, Jameel H (2007) Structural variations in hardwood lignins. In: Proceedings of 14th international symposium on wood fibre pulping chemistry. CD-ROM. Durban, South Africa, June 25–28

  • Chang H-M, Cowling EB, Brown W, Adler E, Miksche G (1975) Comparative studies on cellulolytic enzyme lignin and milled lignin of sweetgum and spruce. Holzforschung 29:153–159

    Article  CAS  Google Scholar 

  • Enoki A, Yaku F, Koshijima T (1983) Synthesis of LCC model compounds and their chemical and enzymatic stabilities. Holzfoschung 37:135–141

    Article  CAS  Google Scholar 

  • Eriksson Ö, Goring DAI, Lindgren BO (1980) Structural studies on the chemical bonds between lignins and carbohydrates in spruce wood. J Wood Sci Technol 14:267–279

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry ultrastructure reactions. Walter de Gruyrer, Berlin

    Google Scholar 

  • Freudenberg K (1968) In: Freudenberg K, Neish AC (eds) Constitution and biosynthesis of lignin. Springer, Berlin, pp 93–94

  • Fujimoto A, Matsumoto Y, Meshitsuka G, Chang H-m (2005) Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin. J Wood Sci 51:89–91

    Article  CAS  Google Scholar 

  • Heikkinen S, Toikka MM, Karhunen T, Kilpelainen IA (2003) Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: Application to wood lignin. J Am Chem Soc 125:4362–4367

    Article  PubMed  CAS  Google Scholar 

  • Helm RF (2000) Lignin-polysaccharide interaction in woody plants. In: Glasser WG, Northey RA, Schultz TP (eds) Lignin: historical, biological, and material perspectives ACS symposium series 742, Washington, DC, pp 161–171

  • Hu Z, Yeh TF, Chang H-M, Matsumoto Y, Kadla JF (2006) Elucidation of the structure of cellulolitic enzyme lignin. Holzforschung 60:389–397

    Article  CAS  Google Scholar 

  • Ibarra D, Chavez MI, Rencoret J, Del Rio JC, Gutierrez A, Romero J, Camarero S, Martinez MJ, Jumenez-Barbero J, Martinez AT (2007) Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study. J Agric Food Chem 55:3477–3490

    Article  PubMed  CAS  Google Scholar 

  • Juhást T, Szengyel Z, Réczey K, Siika-Aho M, Viikari L (2005) Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 40:3519–3525

    Article  Google Scholar 

  • Karlsson O, Ikeda T, Kishimoto T, Magara K, Matsumoto Y, Hosoya S (2004) Isolation of lignin–carbohydrate bonds in wood. Model experiments and preliminary application to pine wood. J Wood Sci 50:142–150

    Article  CAS  Google Scholar 

  • Koshijima T, Watanabe T (2003) Association between lignin and carbohydrates in wood and other plant tissues. Springer, Berlin

    Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin carbohydrate complexes in wood and in chemical pulps. Biomacromolecules 6:3467–3473

    Article  PubMed  CAS  Google Scholar 

  • Li K, Helm RF (1995) Synthesis and rearrangement reactions of ester-linked lignin–carbohydrate model compounds. J Agric Food Chem 43:2098–2103

    Article  CAS  Google Scholar 

  • Martínez AT, Rencoret J, Marques G, Gutiérrez A, Ibarra D, Jiménez-Barbero J, Del Rio JC (2008) Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study. Phytochemistry 69:2831–2843

    Article  PubMed  Google Scholar 

  • Minor JL (1982) Chemical linkage of pine polysaccharides to lignin. J Wood Chem Technol 2:1–16

    Article  CAS  Google Scholar 

  • Obst J (1982) Frequency and alkali resistance of lignin–carbohydrate bonds in wood. Tappi 65:109–112

    CAS  Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield R, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  • Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Reddy MSS, Chen F, Dixon RA (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281:8843–8853

    Article  PubMed  CAS  Google Scholar 

  • Terashima N, Ralph SA, Landucci LL (1996) New facile synthesis of monolignol glycosides; p-glucocoumaryl alcohol, coniferin and syringin. Holzforschung 50:151–155

    Article  CAS  Google Scholar 

  • Toikka M, Brunow G (1999) Lignin–carbohydrate model compounds. Reactivity of methyl 3-O- (α-l-arabinofuranosyl)-β-d-xylopyranoside and methyl β-d-xylopyranoside towards a β-O-4-quinone methide. J Chem Soc Perkin Trans 1:1877–1883

    Article  Google Scholar 

  • Toikka M, Sipila J, Teleman A, Brunow G (1998) Lignin–carbohydrate model compounds. Formation of lignin-methyl arabinoside and lignin-methyl galactoside benzyl ethers via quinine methide intermediates. J Chem Soc Perkin Trans 1:3813–3818

    Article  Google Scholar 

  • Tokimatsu T, Umezawa T, Shimada M (1996) Synthesis of four diastereomeric lignin carbohydrate complexes (LCC) model compounds composed of a β-O-4 lignin model linked to methyl-β-d-glucose. Holzforschung 50:156–160

    Article  CAS  Google Scholar 

  • Wang Z, Yokoyama T, Chang H-M, Matsumoto Y (2009) Dissolution of beech and spruce milled woods in LiCl/DMSO. J Agric Food Chem 57:6167–6170

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T (1989) Structural studies on the covalent bonds between lignin and carbohydrate in lignin–carbohydrate complexes by selective oxidation of the lignin with 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone. Wood Res 76:59–123

    CAS  Google Scholar 

  • Yelle DJ, Ralph J, Frihart CR (2008) Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magn Res Chem 46:508–517

    Article  CAS  Google Scholar 

  • Zhang L, Gellerstedt G (2000) Achieving quantitative assignment of lignin structure by combining 13C and HSQC NMR techniques. In: Proceedings of the 6th European workshop on lignocellulosics and pulp, Bordeaux, France, September 3–6, pp 7–10

  • Zhang L, Gellerstedt G (2007) Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard reference. Magn Res Chem 45:37–45

    Article  CAS  Google Scholar 

  • Zhang L, Gellerstedt G, Lu F, Ralph J (2006) NMR studies on the occurrence of spirodienone structures in lignins. J Wood Chem Technol 26:65–79

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Kevin Knagge (DHMRI) for acquiring NMR spectra on the 950 MHz NMR spectrometer and Dr. Clemens Anklin (Bruker BioSpin) for very valuable suggestions in the optimization of NMR conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Balakshin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakshin, M., Capanema, E., Gracz, H. et al. Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233, 1097–1110 (2011). https://doi.org/10.1007/s00425-011-1359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1359-2

Keywords

Navigation