Skip to main content
Log in

Evolution of temporal dynamic of volatile organic compounds (VOCs) and odors of hemp stem during field retting

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

New non-destructive approach to evaluate the retting process was investigated. Increase of retting duration led to a decrease of VOCs emitted by plants and change of color and plant odor. The variation of VOCs and odor could be used as indicators for the degree of retting.

Abstract

In the hemp industry, retting is an upstream bioprocessing applied to the plants to facilitate the decortication of fibres from the central woody part of the stem. This treatment is currently carried out in an empirical way on the ground which leads to variability in the hemp stems quality, and thus to the hemp fibres quality. Therefore, controlling retting treatment is a crucial step for high-performance hemp fibre. In this study, a new approach is used to assess the retting degree by following the evolution of VOCs emitted by plants during different retting durations. Either harvest time or retting induces a change in VOCs released by plants. During plant maturity, volatile compounds emitted decreased with a factor of about 2, in relation to VOCs released at the end of flowering. Regardless of the harvest period, the majority of VOCs and odor concentrations, monitored by olfactometric analysis, decrease gradually until some of them disappear at the end of retting. Likewise, the green plant odor disappears during retting with an increase of dry plants odor and an appearance of fermented odor at the end of retting. Following the evolution of VOCs emitted by plants during retting could be a tool for farmers to improve the retting management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akin DE, Condon B, Sohn M et al (2007) Optimization for enzyme-retting of flax with pectate lyase. Ind Crops Prod 25:136–146

    Article  CAS  Google Scholar 

  • Amaral JA, Knowles R (1997) Inhibition of methane consumption in forest soils and pure cultures of methanotrophs by aqueous forest soil extracts. Soil Biol Biochem 29:1713–1720

    Article  CAS  Google Scholar 

  • Aziz SH, Ansell MP (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1—polyester resin matrix. Compos Sci Technol 64:1219–1230

    Article  CAS  Google Scholar 

  • Bleuze L, Lashermes G, Alavoine G, Recous S, Chabbert B (2018) Tracking the dynamics of hemp dew retting under controlled environmental conditions. Ind Crops Prod 123:55–63

    Article  CAS  Google Scholar 

  • Bourmaud A, Baley C (2010) Effects of thermo mechanical processing on the mechanical properties of biocomposite flax fibers evaluated by nanoindentation. Polym Degrad Stab 95:1488–1494

    Article  CAS  Google Scholar 

  • Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 90:837–849

    Article  CAS  PubMed  Google Scholar 

  • Capitani D, Brilli F, Mannina L et al (2009) In situ investigation of leaf water status by portable unilateral nuclear magnetic resonance. Plant Physiol 149:1638–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cariou S, Chaignaud M, Montreer P et al (2016) Odor concentration prediction by gaschromatography and mass spectrometry (GC–MS): importance of VOCs quantification and odor detection threshold accuracy. Chem Eng Trans 54:67–72

    Google Scholar 

  • Chaignaud M, Cariou S, Poette J et al (2014) A new method to evaluate odour annoyance potential. Chem Eng Trans 40:13–18

    Google Scholar 

  • Cookson JT (1995) Bioremediation engineering; design and application. McGraw-Hill, New York

    Google Scholar 

  • Copolovici L, Niinemets Ü (2010) Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant Cell Environ 9:1582–1594

    Google Scholar 

  • Djemiel C, Grec S, Hawkins S (2017) Characterization of bacterial and fungal community dynamics by high-throughput sequencing (HTS) metabarcoding during flax dew-retting. Front Microbiol 8:1–16

    Article  Google Scholar 

  • Duval A, Bourmaud A, Augier L, Baley C (2011) Influence of the sampling area of the stem on the mechanical properties of hemp fibers. Mater Lett 65:797–800

    Article  CAS  Google Scholar 

  • ElSohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548

    Article  CAS  PubMed  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol—the simplest natural product from plants. Trends Plant Sci 1:296–301

    Article  Google Scholar 

  • Filella I, Peñuelas J (1999) Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecol 145:157–165

    Article  Google Scholar 

  • Galbally IE, Kirstine W (2002) The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem 43:195–229

    Article  CAS  Google Scholar 

  • Gershenzon J, Croteau R (1991) Terpenoids. In: Rosenthal G, Berenbaum M (eds) Herbivores : their interactions with secondary plant metabolites. The chemical participants, vol I. Academic Press, USA, pp 165–219

    Chapter  Google Scholar 

  • Gfeller A, Laloux M, Barsics F et al (2013) Characterization of volatile organic compounds emitted by barley (Hordeum vulgare L.) roots and their attractiveness to wireworms. J Chem Ecol 39:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Ginkel CG, Jong E, Tilanus JWR, Bont JAM (1987) Microbial oxidation of isoprene, a biogenic foliage volatile and of 1,3-butadiene, an anthropogenic gas. FEMS Microbiol Lett 45:275–279

    Article  Google Scholar 

  • Hartikainen K, Am Nerg, Kivimaenpaa M et al (2009) Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature. Tree Physiol 29:1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka A (1996) The fresh green odor emitted by plants. Food Rev Int 12:303–350

    Article  CAS  Google Scholar 

  • Henriksson G, Akin DE, Hanlin RT et al (1997) Identification and retting efficiencies of fungi isolated from dew-retted flax in the United States and Europe. Appl Environ Microbiol 63:3950–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Högnadóttir Á, Rouseff RL (2003) Identification of aroma active compounds in orange essence oil using gas chromatography-olfactometry and gas chromatography–mass spectrometry. J Chromatogr A 998:201–211

    Article  PubMed  CAS  Google Scholar 

  • Holopainen JK, Blande JD (2012) Molecular plant volatile communication. Sens Nat 739:17–31

    Article  CAS  Google Scholar 

  • Hörtensteiner S (2004) The loss of green color during chlorophyll degradation—a prerequisite to prevent cell death? Planta 219:191–194

    Article  PubMed  CAS  Google Scholar 

  • Huang P-Y, Zimmerli L (2014) Enhancing crop innate immunity: new promising trends. Front Plant Sci 5:624

    PubMed  PubMed Central  Google Scholar 

  • Islam MS, Kim LP, Nic JF (2010) Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites Mohammad. J Appl Polym Sci 21:449–456

    Google Scholar 

  • Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35(371–376):6

    Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compunds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Kessler A (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R (2007) Specificity and complexity: the impact of herbivore-induced plant responses on arthropod community structure. Curr Opin Plant Biol 10:409–414

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–501

    Article  CAS  PubMed  Google Scholar 

  • Komarova TV, Sheshukova EV, Dorokhov YL (2014) Cell wall methanol as a signal in plant immunity. Front Plant Sci 5:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu M, Fernando D, Meyer AS et al (2015) Characterization and biological depectinization of hemp fibers originating from different stem sections. Ind Crop Prod 76:880–891

    Article  CAS  Google Scholar 

  • Liu M, Ale MT, Kołaczkowski B et al (2017) Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites. AMB Express 7:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mackie A, Wheatley R (1999) Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol Biochem 31:375–385

    Article  CAS  Google Scholar 

  • Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. South Afr J Bot 76:612–631

    Article  CAS  Google Scholar 

  • Massiot P, Perron V, Baron A, Drilleau J-F (1997) Release of methanol and depolymerization of highly methyl esterified apple pectin with an endopolygalacturonase from aspergillus nigerand pectin methylesterases from a nigeror from orange. LWT Food Sci Technol 30:697–702

    Article  CAS  Google Scholar 

  • Matile P (2000) Biochemistry of Indian summer: physiology of autumnal leaf coloration. Exp Gerontol 35:145–158

    Article  CAS  PubMed  Google Scholar 

  • Mazian B, Bergeret A, Benezet J-C, Malhautier L (2018) Influence of field retting duration on the biochemical, microstructural, thermal and mechanical properties of hemp fibres harvested at the beginning of flowering. Ind Crops Prod 116:170–181

    Article  CAS  Google Scholar 

  • Merzlyak MN, Gitelson A (1995) Why and what for the leaves are yellow in autumn? on the interpretation of optical spectra of senescing leaves (Acerplatanoides L.). J Plant Physiol 145:315–320

    Article  CAS  Google Scholar 

  • Misra G, Pavlostathis SG, Perdue EM, Araujo R (1996) Aerobic biodegradation of selected monoterpenes. Appl Microbiol Biotechnol 45:831–838

    Article  CAS  PubMed  Google Scholar 

  • Monson RK (2013) Metabolic and gene expression controls on the production of biogenic volatile organic compounds. Tree physiology, vol 5. Springer, Berlin

    Google Scholar 

  • Ohta K (1986) Diurnal and seasonal variations in isoprene emission from live oak. Geochem J 19:269–274

    Article  CAS  Google Scholar 

  • Oikawa PY, Lerdau MT (2013) Catabolism of volatile organic compounds influences plant survival. Trends Plant Sci 18:695–703

    Article  CAS  PubMed  Google Scholar 

  • Owen SM, Clark S, Pompe M, Semple KT (2007) Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula. FEMS Microbiol Lett 268:34–39

    Article  CAS  PubMed  Google Scholar 

  • Paavolainen L, Kitunen V, Smolander A (1998) Inhibition of nitrification in forest soil by monoterpenes. Plant Soil 205:147–154

    Article  CAS  Google Scholar 

  • Pakarinen A, Zhang J, Brock T et al (2012) Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin. Bioresour Technol 107:275–281

    Article  CAS  PubMed  Google Scholar 

  • Pelloux J, Rusterucci C, Mellerowicz E (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277

    Article  CAS  PubMed  Google Scholar 

  • Pinto DM, Blande JD, Nykänen R et al (2007) Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J Chem Ecol 33:683–694

    Article  CAS  PubMed  Google Scholar 

  • Placet V, Day A, Beaugrand J (2017) The influence of unintended field retting on the physicochemical and mechanical properties of industrial hemp bast fibres. J Mater Sci 52:5759–5777

    Article  CAS  Google Scholar 

  • Ramirez KS, Lauber CL, Fierer N (2010) Microbial consumption and production of volatile organic compounds at the soil–litter interface. Biogeochemistry 99:97–107

    Article  CAS  Google Scholar 

  • Réquilé S, Le Duigou A, Bourmaud A, Baley C (2018) Peeling experiments for hemp retting characterization targeting biocomposites. Ind Crops Prod 123:573–580

    Article  CAS  Google Scholar 

  • Ribeiro A, Pochart P, Day A et al (2015) Microbial diversity observed during hemp retting. Appl Microbiol Biotechnol 99:4471–4484

    Article  CAS  PubMed  Google Scholar 

  • Schink B, Zeikus JG (1982) Microbial ecology of pectin decomposition in anoxic lake sediments and in defined laboratory cultures of species prevalent in the lake sediment. J Gen Microbiol 128:393–404

    CAS  Google Scholar 

  • Schmidt R, Cordovez V, De Boer W et al (2015) Volatile affairs in microbial interactions. ISME J 9:2329–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiojiri K, Kishimoto K, Ozawa R et al (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci 103:16672–16676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol 115:1413–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamboulis A, Baillie CA, Peijs T (2001) Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos Part A 32:1105–1115

    Article  Google Scholar 

  • Staudt M, Bertin N, Hansen U et al (1997) Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions. Atmos Environ 31:145–156

    Article  CAS  Google Scholar 

  • Takabayashi J, Dicke M, Posthumus MA (1994) Volatile herbivore-induced terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors. J Chem Ecol 20:1329–1354

    Article  CAS  PubMed  Google Scholar 

  • Turner CE, Elsohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43:169–234

    Article  CAS  PubMed  Google Scholar 

  • Van Groenestijn JW, Liu JX (2002) Removal of alpha-pinene from gases using biofilters containing fungi. Atmos Environ 36:5501–5508

    Article  Google Scholar 

  • Van Hylckama Vlieg JET, Leemhuis H, Spelberg JHL, Janssen DB (2000) Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. Strain AD45. J Bacteriol 182:1956–1963

    Article  PubMed  PubMed Central  Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the “CIVAM Chanvre Gardois (Bouquet, France)” for making available for us a plot of land to conduct this study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Malhautier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazian, B., Cariou, S., Chaignaud, M. et al. Evolution of temporal dynamic of volatile organic compounds (VOCs) and odors of hemp stem during field retting. Planta 250, 1983–1996 (2019). https://doi.org/10.1007/s00425-019-03280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03280-6

Keywords

Navigation