Skip to main content
Log in

Humans do not switch between path knowledge and landmarks when learning a new environment

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Using a metric shortcut paradigm, we have found that like honeybees (Dyer in Animal Behaviour 41:239–246, 1991), humans do not seem to build a metric “cognitive map” from path integration. Instead, observers take novel shortcuts based on visual landmarks whenever they are available and reliable (Foo, Warren, Duchon, & Tarr in Journal of Experimental Psychology-Learning Memory and Cognition 31(2):195–215, 2005). In the present experiment we examine whether humans, like ants (Wolf & Wehner in Journal of Experimental Biology 203:857–868, 2000), first use survey-type path knowledge, built up from path integration, and then subsequently shift to reliance on landmarks. In our study participants walked in an immersive virtual environment while head position and orientation were recorded. During training, participants learned two legs of a triangle with feedback: paths from Home to Red and Home to Blue. A configuration of colored posts surrounded the Red location. To test reliance on landmarks, these posts were covertly translated, rotated, or left unchanged during six probe trials. These probe trials were interspersed during the training procedure to measure changes over learning. Dependence on visual landmarks was immediate and sustained during training, and no significant learning effects were observed other than a decrease in hesitation time. Our results suggest that while humans have at least two distinct navigational strategies available to them, unlike ants, a computationally-simpler landmark strategy dominates during novel shortcut navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aginsky, V. (2001). How visual landmarks are selected during small-scale navigation. Providence: Brown University.

    Google Scholar 

  • Appleyard, D. (1969). Why buildings are known: A predictive tool for architects and planners. Environment and Behavior, 1, 131–156.

    Article  Google Scholar 

  • Appleyard, D. (1970). Styles and methods of structuring a city. Environment and Behavior, 2, 100–117.

    Article  Google Scholar 

  • Batschelet, E. (1981). Circular statistics in biology. London: Academic Press.

    Google Scholar 

  • Bennett, A. T. D. (1996). Do animals have cognitive maps? Journal of Experimental Biology, 199(1), 219–224.

    PubMed  Google Scholar 

  • Bisch-Knaden, S., & Wehner, R. (2003a). Landmark memories are more robust when acquired at the nest site than en route: Experiments in desert ants. Naturwissenschaften, 90(3), 127–130.

    PubMed  Google Scholar 

  • Bisch-Knaden, S., & Wehner, R. (2003b). Local vectors in desert ants: context-dependent landmark learning during outbound and homebound runs. Journal of Comparative Physiology. A. Neuroethology, Sensory, Neural, and Behavioral Physiology, 189(3), 181–187.

    Google Scholar 

  • Chapuis, N. (1982). Mechanisms of spatial-behavior in a returning task in dogs. Annee Psychologique, 82(1), 75–100.

    Google Scholar 

  • Chase, W. G. (1983). Spatial representation of taxi drivers. In D. Rogers, & J. A. Sloboda (Eds.), The acquisition of symbolic skill (pp. 391–405). New York: Plenum.

    Google Scholar 

  • Ciancia, F. (1991). Tolman and Honzik (1930) revisited, or the mazes of psychology. The Psychological Record, 41, 461–472.

    Google Scholar 

  • Collett, T. S., & Graham, P. (2004). Animal navigation: Path integration, visual landmarks and cognitive maps. Current Biology, 14(12), R475–R477.

    Article  PubMed  Google Scholar 

  • Collett, T. S., Collett, M., & Wehner, R. (2001). The guidance of desert ants by extended landmarks. Journal of Experimental Biology, 204(9), 1635–1639.

    PubMed  Google Scholar 

  • Dyer, F. C. (1991). Bees acquire route-based memories but not cognitive maps in a familiar landscape. Animal Behaviour, 41, 239–246.

    Article  Google Scholar 

  • Dyer, F. C., Berry, N. A., & Richard, A. S. (1993). Honey bee spatial memory: use of route-based memories after displacement. Animal Behaviour, 45, 1028–1030.

    Article  Google Scholar 

  • Eilam, D., Dank, M., & Maurer, R. (2003). Voles scale locomotion to the size of the open-field by adjusting the distance between stops: a possible link to path integration. Behavioural Brain Research, 141(1), 73–81.

    Article  PubMed  Google Scholar 

  • Etienne, A. S., Teroni, E., Hurni, C., & Portenier, V. (1990). The effect of a single light cue on homing behavior of the golden-hamster. Animal Behaviour, 39, 17–41.

    Article  Google Scholar 

  • Etienne, A. S., Boulens, V., Maurer, R., Rowe, T., & Siegrist, C. (2000). A brief view of known landmarks reorientates path integration in hamsters. Naturwissenschaften, 87(11), 494–498.

    Article  PubMed  Google Scholar 

  • Etienne, A. S., Maurer, R., Boulens, V., Levy, A., & Rowe, T. (2004). Resetting the path integrator: a basic condition for route-based navigation. Journal Of Experimental Biology, 207(9), 1491–1508.

    Article  PubMed  Google Scholar 

  • Foo, P., Warren, W. H., Duchon, A., & Tarr, M. J. (2005). Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. Journal of Experimental Psychology-Learning Memory and Cognition, 31(2), 195–215.

    Article  Google Scholar 

  • Foo, P., Harrison, M. C., Duchon, A. P., Warren, W. H. J., & Tarr, M. J. (2006). Humans follow perturbed landmarks during continuous path integration unless explicitly told to ignore them (in preparation).

  • Fujita, N., Loomis, J. M., Klatzky, R. L., & Golledge, R. G. (1990). A minimal representation for dead-reckoning navigation—updating the homing vector. Geographical Analysis, 22(4), 326–335.

    Google Scholar 

  • Fujita, N., Klatzky, R. L., Loomis, J. M., & Golledge, R. G. (1993). The encoding-error model of pathway completion without vision. Geographical Analysis, 25(4), 295–314.

    Article  Google Scholar 

  • Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Gillner, S., & Mallot, H. A. (1998). Navigation and acquisition of spatial knowledge in a virtual maze. Journal of Cognitive Neuroscience, 10(4), 445–463.

    Article  PubMed  Google Scholar 

  • Gould, J. L. (1986). The locale map of honey bees: Do insects have cognitive maps? Science, 232(4752), 861–863.

    Article  PubMed  Google Scholar 

  • Gould J. L., & Gould, C. G. (1982). The insect mind: Physics or metaphysics? In D. R. Griffin (Ed.) Animal mind–human mind (pp. 269–298). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Hamilton, D. A., Driscoll, I., & Sutherland, R. J. (2002). Human place learning in a virtual Morris water task: Some important constraints on the flexibility of place navigation. Behavioral Brain Research, 1(2), 159–170.

    Article  Google Scholar 

  • Kearns, M. J., Warren, W. H., Duchon, A. P., & Tarr, M. J. (2002). Path integration from optic flow and body senses in a homing task. Perception, 31(3), 349–374.

    Article  PubMed  Google Scholar 

  • Klatzky, R. L., Loomis, J., Golledge, R., Cicinelli, J. G., Doherty, S., & Pellegrino, J. W. (1990). Acquisition of route and survey knowledge in the absence of vision. Journal of Motor Behavior, 22(1), 19–43.

    PubMed  Google Scholar 

  • Landau, B., Spelke, E., & Gleitman, H. (1984). Spatial knowledge in a young blind child. Cognition, 16(3), 225–260.

    Article  PubMed  Google Scholar 

  • Lee, T. (1962). “Brennan’s law” of shopping behaviour. Psychological Reports, 11, 662.

    Article  Google Scholar 

  • Lee, T. (1970). Urban neighborhood as a socio-spatial schema. Ekistics; An Introduction to the Science of Human Settlements, 177, 241–267.

    Google Scholar 

  • Lehrer, M., & Collett, T. S. (1994). Approaching and departing bees learn different cues to the distance of a landmark. Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 175, 171–177.

    Article  Google Scholar 

  • Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. A. (1993). Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology-General, 122(1), 73–91.

    Article  PubMed  Google Scholar 

  • Lynch, K. (1960). The image of the city. Cambridge, MA: MIT Press.

    Google Scholar 

  • Maguire, E. A., Frackowiak, R. S., & Frith, C. D. (1997). Recalling routes around london: Activation of the right hippocampus in taxi drivers. Journal of Neuroscience, 17(18), 7103–7110.

    PubMed  Google Scholar 

  • Maier, N. R. F. (1932). A study of orientation in the rat. Journal of Comparative Psychology, 14(3), 387–399.

    Article  Google Scholar 

  • Menzel, E. W. (1973). Chimpanzee spatial memory organization. Science, 182, 943–945.

    Article  PubMed  Google Scholar 

  • Menzel, R., Chittka, L., Eichmuller, S., Peitsch, D., & Knoll, P. (1990). Dominance of celestial cues over landmarks disproves map-like orientation in honey bees. Zeitschrift fur Naturforschung C, 45, 723–726.

    Google Scholar 

  • Morris, R. G., Garrud, P., Rawlins, J. N., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.

    Article  PubMed  Google Scholar 

  • Nadel, L. (1990). Varieties of spatial cognition—psychobiological considerations. Annals of the New York Academy of Sciences, 608, 613–636.

    Article  PubMed  Google Scholar 

  • O'Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press.

    Google Scholar 

  • Péruch, P., Giraudo, M. D., & Garling, T. (1989). Distance cognition by taxi drivers and the general public. Journal of Environmental Psychology, 9(3), 233–239.

    Article  Google Scholar 

  • Péruch, P., May, M., & Wartenberg, F. (1997). Homing in virtual environments: Effects of field of view and path layout. Perception, 26(3), 301–311.

    Article  PubMed  Google Scholar 

  • Riecke, B. E., van Veen, H., & Bülthoff, H. H. (2002). Visual homing is possible without landmarks: A path integration study in virtual reality. Presence-Teleoperators And Virtual Environments, 11(5), 443–473.

    Article  Google Scholar 

  • Spetch, M. L., Cheng, K., MacDonald, S. E., Linkenhoker, B. A., Kelly, D. M., & Doerkson, S. R. (1997). Use of landmark configuration in pigeons and humans.2. Generality across search tasks. Journal of Comparative Psychology, 111(1), 14–24.

    Article  Google Scholar 

  • Suppes, P., Krantz, D. M., Luce, R. D., & Tversky, A. (1989). Foundations of measurement: Geometrical, threshold, and probabilistic representations (Vol. 2). San Diego: Academic Press, Inc. Harcourt Brace Jovanovich Publishers.

  • Tarr, M. J., & Warren, W. H. (2002). Virtual reality in behavioral neuroscience and beyond. Nature Neuroscience, 5(Suppl), 1089–1092.

    Article  PubMed  Google Scholar 

  • Teroni, E., Portenier, V., & Etienne, A. S. (1987). Spatial orientation of the golden-hamster in conditions of conflicting location-based and route-based information. Behavioral Ecology And Sociobiology, 20(6), 389–397.

    Article  Google Scholar 

  • Thinus-Blanc, C. (1987). The cognitive map concept and its consequences. In P. Ellen, & C. Thinus-Blanc, (Eds.), Cognitive processes in animal and man (pp. 1–19). The Hague: Martinus Nijhoff, N.A.T.O A.S.I. series.

  • Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., & Beall, A. C. (2004). Does the quality of the computer graphics matter when judging distances in virtually immersive environments? Presence: Teleoperators & Virtual Environments, 13(5), 560–571.

    Article  Google Scholar 

  • Tolman E. C. (1948). Cognitive maps in rats and men. The Psychological Review, 55(4), 189–208.

    Article  Google Scholar 

  • Trullier O., Wiener S. I., Berthoz A., & Meyer, J. A. (1997). Biologically-based artificial navigation systems: Review and prospects. Progress in Neurobiology, 51, 483–544.

    Article  PubMed  Google Scholar 

  • Waller, D., Loomis, J., Golledge, R., & Beall, A. C. (2000). Place learning in humans: The role of distance and direction information. Spatial Cognition and Computation, 2, 333–354.

    Article  Google Scholar 

  • Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: insights from animals. Trends in Cognitive Sciences, 6(9), 376–382.

    Article  PubMed  Google Scholar 

  • Wehner, R., Bleuler, S., Nievergelt, C., & Shah, D. (1990). Bees navigate by using vectors and routes rather than maps. Naturwissenschaften, 77, 479–482.

    Article  Google Scholar 

  • Whishaw, I. Q., & Brooks, B. L. (1999). Calibrating space: Exploration is important for allothetic and idiothetic navigation. Hippocampus, 9(6), 659–667.

    Article  PubMed  Google Scholar 

  • Wolf, H., & Wehner, R. (2000). Pinpointing food sources: Olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. Journal of Experimental Biology, 203, 857–868.

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation (LIS IRI 9720327; 0214383). The authors would like to thank Amanda Forte, Nick Beem, and Jonathan Ring for help in collecting data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Foo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foo, P., Duchon, A., Warren, W.H. et al. Humans do not switch between path knowledge and landmarks when learning a new environment. Psychological Research 71, 240–251 (2007). https://doi.org/10.1007/s00426-006-0080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-006-0080-4

Keywords

Navigation