Skip to main content
Log in

Age-related effects on spatial memory across viewpoint changes relative to different reference frames

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Remembering object positions across different views is a fundamental competence for acting and moving appropriately in a large-scale space. Behavioural and neurological changes in elderly subjects suggest that the spatial representations of the environment might decline compared to young participants. However, no data are available on the use of different reference frames within topographical space in aging. Here we investigated the use of allocentric and egocentric frames in aging, by asking young and older participants to encode the location of a target in a virtual room relative either to stable features of the room (allocentric environment-based frame), or to an unstable objects set (allocentric objects-based frame), or to the viewer’s viewpoint (egocentric frame). After a viewpoint change of 0° (absent), 45° (small) or 135° (large), participants judged whether the target was in the same spatial position as before relative to one of the three frames. Results revealed a different susceptibility to viewpoint changes in older than young participants. Importantly, we detected a worst performance, in terms of reaction times, for older than young participants in the allocentric frames. The deficit was more marked for the environment-based frame, for which a lower sensitivity was revealed as well as a worst performance even when no viewpoint change occurred. Our data provide new evidence of a greater vulnerability of the allocentric, in particular environment-based, spatial coding with aging, in line with the retrogenesis theory according to which cognitive changes in aging reverse the sequence of acquisition in mental development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antonova, E., Parslow, D., Brammer, M., Dawson, G. R., Jackson, S. H., & Morris, R. G. (2009). Age-related neural activity during allocentric spatial memory. Memory, 17(2), 125–143. doi:10.1080/09658210802077348.

    Article  PubMed  Google Scholar 

  • Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. doi:10.1146/annurev.neuro.280.061604.135709.

    Article  PubMed  Google Scholar 

  • Barnes, C. A., Nadel, L., & Honig, W. K. (1980). Spatial memory deficit in senescent rats. Canadian Journal of Experimental Psychology, 34(1), 29–39. doi:10.1037/h0081022.

    Article  Google Scholar 

  • Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G., & Zijdenbos, A. P. (2007). Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. Journal of Neuroscience, 27(38), 10078–10083. doi:10.1523/JNEUROSCI.1763-07.2007.

    Article  PubMed  Google Scholar 

  • Brickman, A. M., Meier, I. B., Korgaonkar, M. S., Provenzano, F. A., Grieve, S. M., Siedlecki, K. L., et al. (2012). Testing the white matter retrogenesis hypothesis of cognitive aging. Neurobiology of Aging, 33(8), 1699–1715. doi:10.1016/j.neurobiolaging.20110.060.001.

    Article  PubMed Central  PubMed  Google Scholar 

  • Clancy Dollinger, S. M. (1995). Mental rotation performance: age, sex, and visual field differences. Developmental Neuropsychology, 11(2), 215–222. doi:10.1080/87565649509540614.

    Article  Google Scholar 

  • Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: a review. Journal of environmental psychology, 24(3), 329–340. doi:10.1016/j.jenvp.20040.080.006.

    Article  Google Scholar 

  • Committeri, G., Galati, G., Paradis, A. L., Pizzamiglio, L., Berthoz, A., & LeBihan, D. (2004). Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. Journal of Cognitive Neuroscience, 16(9), 1517–1535. doi:10.1162/0898929042568550.

    Article  PubMed  Google Scholar 

  • Craik, F. I. M., & Salthouse, T. A. (2007). The handbook of aging and cognition (3rd ed.). New York: Psychology Press.

    Google Scholar 

  • de Ajuriaguerra, J., & Tissot, R. (1968). Some aspects of psychoneurologic disintegration in senile dementia (pp. 69–84). Senile Dementia: Clinical and Therapeutic Aspects. Bern, Huber.

    Google Scholar 

  • de Ajuriaguerra, J., & Tissot, R. (1975). Some aspects of language in various forms of senile dementia (comparisons with language in childhood). Foundations of language development, 1, 323–339.

    Google Scholar 

  • Driscoll, I., Hamilton, D. A., Yeo, R. A., Brooks, W. M., & Sutherland, R. J. (2005). Virtual navigation in humans: the impact of age, sex, and hormones on place learning. Hormones and Behavior, 47(3), 326–335. doi:10.1016/j.yhbeh.2004.110.013.

    Article  PubMed  Google Scholar 

  • Dror, I. E., Schmitz-Williams, I. C., & Smith, W. (2005). Older adults use mental representations that reduce cognitive load: mental rotation utilizes holistic representations and processing. Experimental Aging Research, 31(4), 409–420. doi:10.1080/03610730500206725.

    Article  PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. doi:10.3758/BRM.41.4.1149.

    Article  PubMed  Google Scholar 

  • Galati, G., Committeri, G., Spitoni, G., Aprile, T., Di Russo, F., Pitzalis, S., et al. (2008). A selective representation of the meaning of actions in the auditory mirror system. Neuroimage, 40(3), 1274–1286. doi:10.1016/j.neuroimage.2007.120.044.

    Article  PubMed  Google Scholar 

  • Galati, G., Pelle, G., Berthoz, A., & Committeri, G. (2010). Multiple reference frames used by the human brain for spatial perception and memory. Experimental Brain Research, 206(2), 109–120. doi:10.1007/s00221-010-2168-8.

    Article  PubMed  Google Scholar 

  • Harris, M. A., Wiener, J. M., & Wolbers, T. (2011). Aging specifically impairs switching to an allocentric navigational strategy. Frontiers in aging neuroscience, 4, 29. doi:10.3389/fnagi.20120.00029.

    Google Scholar 

  • Harris, M. A., & Wolbers, T. (2013). How age-related strategy switching deficits affect wayfinding in complex environments. Neurobiology of Aging,. doi:10.1016/j.neurobiolaging.2013.100.086.

    Google Scholar 

  • Herman, J. F., & Coyne, A. C. (1980). Mental manipulation of spatial information in young and elderly adults. Developmental Psychology, 16(5), 537. doi:10.1037/0012-1649.16.5.537.

    Article  Google Scholar 

  • Hort, J., Laczo, J., Vyhnalek, M., Bojar, M., Bures, J., & Vlcek, K. (2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proceeding of the National Academyof Sciences, 104(10), 4042–4047. doi:10.1073/pnas0.0611314104.

    Article  Google Scholar 

  • Huttenlocher, J., & Presson, C. C. (1979). The coding and transformation of spatial information. Cognitive Psychology, 11(3), 375–394. doi:10.1016/0010-0285(79)90017-3.

    Article  PubMed  Google Scholar 

  • Iachini, T., Ruggiero, G., & Ruotolo, F. (2009). The effect of age on egocentric and allocentric spatial frames of reference. Cognitive Processing, 10(2), S222–S224. doi:10.1007/s10339-009-0276-9.

    Article  PubMed  Google Scholar 

  • Iaria, G., Palermo, L., Committeri, G., & Barton, J. J. (2009). Age differences in the formation and use of cognitive maps. Behavioural Brain Research, 196(2), 187–191. doi:10.1016/j.bbr.20080.080.040.

    Article  PubMed  Google Scholar 

  • Inagaki, H., Meguro, K., Shimada, M., Ishizaki, J., Okuzumi, H., & Yamadori, A. (2002). Discrepancy between mental rotation and perspective-taking abilities in normal aging assessed by Piaget’s Three-mountain task. Journal of Clinical and Experimental Neuropsychology, 24(1), 18–25. doi:10.1076/jcen.24.1.18.969.

    Article  PubMed  Google Scholar 

  • Jenkins, L., Myerson, J., Joerding, J. A., & Hale, S. (2000). Converging evidence that visuospatial cognition is more age-sensitive than verbal cognition. Psychology and Aging, 15(1), 157–175. doi:10.1037/0882-7974.15.1.157.

    Article  PubMed  Google Scholar 

  • King, J. A., Burgess, N., Hartley, T., Vargha-Khadem, F., & O’Keefe, J. (2002). Human hippocampus and viewpoint dependence in spatial memory. Hippocampus, 12(6), 811–820.

    Article  PubMed  Google Scholar 

  • Lemay, M., Bertram, C. P., & Stelmach, G. E. (2004). Pointing to an allocentric and egocentric remembered target in younger and older adults. Experimental Aging Research, 30(4), 391–406. doi:10.1080/03610730490484443.

    Article  PubMed  Google Scholar 

  • Meulenbroek, O., Petersson, K. M., Voermans, N., Weber, B., & Fernandez, G. (2004). Age differences in neural correlates of route encoding and route recognition. Neuroimage, 22(4), 1503–1514. doi:10.1016/j.neuroimage.20040.040.007.

    Article  PubMed  Google Scholar 

  • Moffat, S. D. (2009). Aging and spatial navigation: what do we know and where do we go? Neuropsycholy Review, 19(4), 478–489. doi:10.1007/s11065-009-9120-3.

    Article  Google Scholar 

  • Moffat, S. D., Elkins, W., & Resnick, S. M. (2006). Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiology of Aging, 27(7), 965–972. doi:10.1016/j.neurobiolaging.20050.050.011.

    Article  PubMed  Google Scholar 

  • Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17(6), 1274–1282. doi:10.1093/cercor/bhl036.

    Article  PubMed  Google Scholar 

  • Moffat, S. D., & Resnick, S. M. (2002). Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behavioral Neuroscience, 116(5), 851–859. doi:10.1037/0735-7044.116.5.851.

    Article  PubMed  Google Scholar 

  • Moffat, S. D., Zonderman, A. B., & Resnick, S. M. (2001). Age differences in spatial memory in a virtual environment navigation task. Neurobiology of Aging, 22(5), 787–796. doi:10.1016/S0197-4580(01)00251-2.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113. doi:10.1016/0028-3932(71)90067-4.

    Article  PubMed  Google Scholar 

  • Palermo, L., Iaria, G., & Guariglia, C. (2008). Mental imagery skills and topographical orientation in humans: a correlation study. Behavioural Brain Research, 192(2), 248–253. doi:10.1016/j.bbr.20080.040.014.

    Article  PubMed  Google Scholar 

  • Parkin, A. J., Walter, B. M., & Hunkin, N. M. (1995). Relationships between normal ageing, frontal lobe function, and memory for temporal and spatial information. Neuropsychology, 9, 304–312. doi:10.1016/S0028-3932(96)00073-5.

    Article  Google Scholar 

  • Piaget, J. (1960). The Psychology of Intelligence. Totowa: Littlefield, Adams.

    Google Scholar 

  • Piaget, J. (1973). The child and reality: Problems of genetic psychology. New York: Grossman.

    Google Scholar 

  • Piaget, J., & Inhelder, B. (1956). The child’s concept of space. New York: Humanities Pr.

    Google Scholar 

  • Reisberg, B., Franssen, E. H., Hasan, S. M., Monteiro, I., Boksay, I., Souren, L. E., et al. (1999). Retrogenesis: clinical, physiologic, and pathologic mechanisms in brain aging, Alzheimer’s and other dementing processes. European Archives of Psychiatry and Clinical Neuroscience, 249(3), 28–36.

    Article  PubMed  Google Scholar 

  • Reisberg, B., Franssen, E. H., Souren, L. E., Auer, S. R., Akram, I., & Kenowsky, S. (2002). Evidence and mechanisms of retrogenesis in Alzheimer’s and other dementias: management and treatment import. American journal of Alzheimer’s disease and other dementias, 17(4), 202–212.

    Article  PubMed  Google Scholar 

  • Rogalski, E., Stebbins, G. T., Barnes, C. A., Murphy, C. M., Stoub, T. R., George, S., et al. (2012). Age-related changes in parahippocampal white matter integrity: a diffusion tensor imaging study. Neuropsychologia, 50(8), 1759–1765. doi:10.1016/j.neuropsychologia.20120.030.033.

    Article  PubMed Central  PubMed  Google Scholar 

  • Save, E., & Poucet, B. (2000). Hippocampal-parietal cortical interactions in spatial cognition. Hippocampus, 10(4), 491–499.

    Article  PubMed  Google Scholar 

  • Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods Instruments and Computers, 31(1), 137–149. doi:10.3758/BF03207704.

    Article  Google Scholar 

  • Stricker, N. H., Schweinsburg, B. C., Delano-Wood, L., Wierenga, C. E., Bangen, K. J., Haaland, K. Y., et al. (2009). Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer’s disease supports retrogenesis. Neuroimage, 45(1), 10–16. doi:10.1016/j.neuroimage.2008.110.027.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sugovic, M., & Witt, J. K. (2013). An older view on distance perception: older adults perceive walkable extents as farther. Experimental Brain Research, 226(3), 383–391. doi:10.1007/s00221-013-3447-y.

    Article  PubMed  Google Scholar 

  • Sulpizio, V., Committeri, G., Lambrey, S., Berthoz, A., & Galati, G. (2013). Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame. Behavioural Brain Research, 242, 62–75. doi:10.1016/j.bbr.2012.120.031.

    Article  PubMed  Google Scholar 

  • Wiener, J. M., de Condappa, O., Harris, M. A., & Wolbers, T. (2013). Maladaptive bias for extrahippocampal navigation strategies in aging humans. The Journal of Neuroscience, 33(14), 6012–6017. doi:10.1523/JNEUROSCI0.0717-12.2013.

    Article  PubMed  Google Scholar 

  • Wolbers, T., Dudchenko, P. A., & Wood, E. R. (2014). Spatial memory—a unique window into healthy and pathological aging. Frontiers in aging neuroscience, 6, 35. doi:10.3389/fnagi.20140.00035.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by University G. d’Annunzio grants to GC and by grants from Italian Ministry 1071 of Health – Fondazione Santa Lucia (RC2008-2009) to GG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Montefinese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montefinese, M., Sulpizio, V., Galati, G. et al. Age-related effects on spatial memory across viewpoint changes relative to different reference frames. Psychological Research 79, 687–697 (2015). https://doi.org/10.1007/s00426-014-0598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0598-9

Keywords

Navigation