Skip to main content

Advertisement

Log in

Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, the larvicidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against late third-instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (5, 10, 15, 20, and 25 μg mL−1) and aqueous leaf extract (25, 50, 75, 100, and 125 μg mL−1) were tested against the larvae of A. stephensi, A. aegypti, and C. quinquefasciatus. Larvae were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy analysis (EDX). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 11.56 and 20.56 μg mL−1; A. aegypti had LC50 and LC90 values of 13.13 and 23.12 μg mL−1; and C. quinquefasciatus had LC50 and LC90 values of 14.19 and 24.30 μg mL−1. No mortality was observed in the control. These results suggest that the green synthesis of silver nanoparticles using F. elephantum has the potential to be used as an ideal eco-friendly approach for the control of A. stephensi, A. aegypti, and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agalya Priyadarshini K, Murugan K, Panneerselvam C, Ponarulselvam S, Jiang-Shiou H, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111:997–1006

    Article  Google Scholar 

  • Amer A, Mehlhorn H (2006) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  • Anyaele OO, Amusan AAS (2003) Toxicity of hexanoic extracts of Dennettia tripetala (G. Baxer) on larvae of Aedes aegypti (L). Afr J Biomed Res 6:49–53

    Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne Zoonotic Dis 12(3):262–268

    Article  PubMed  Google Scholar 

  • Bansal SK, Singh KV (1995) Susceptibility status of two species of Japanese encephalitis vectors to insecticides in the Thar Desert, district Bikaner (Rajasthan). Indian J Med Res 101:190–192

    CAS  PubMed  Google Scholar 

  • Bansal SK, Singh KV, Kumar S (2009) Larvicidal activity of the extracts from different parts of the plant Solanum xanthocarpum against important mosquito vectors in the arid region. J Environ Biol 30(2):221–226

    CAS  PubMed  Google Scholar 

  • Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticles a potential new insecticide for mosquito vector control. Parasitol Res 111:1075–1083

    Article  PubMed  Google Scholar 

  • Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  PubMed  Google Scholar 

  • Bernhard L, Bernhard P, Magnussen P (2003) Management of patients with lymphoedema caused by filariasis in northeastern Tanzania: alternative approaches. Physiotherapy 89:743–749

    Article  Google Scholar 

  • Carpinella MC, Miranda M, Almirón WR, Ferrayoli CG, Almeida FL (2007) In vitro pediculicidal and ovicidal activity of an extract and oil from fruits of Melia azedarach L. J Am Acad Dermatol 56(2):250–256

    Article  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  PubMed  Google Scholar 

  • Das PK, Pani SP, Krishnamoorthy K (2000) Prospects of elimination of lymphatic filariasis in India. ICMR Bull 32(5–6):41–54

    Google Scholar 

  • Enserink M (2006) Massive outbreak draws fresh attention to littleknown virus. Science 311:1085

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, vol 551. Cambridge University Press London, London, pp 68–72

    Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley, Hoboken

    Book  Google Scholar 

  • Govindarajan M (2010) Larvicidal and repellent activities of Sida acuta Burm. F. (family: Malvaceae) against three important vector mosquitoes. Asian Pac J Trop Med 3(9):691–695

    Article  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008) Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102(2):289–292

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal and repellent properties of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Asian Pac J Trop Biomed 1(1):43–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Article  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G, Velayutham K, Rao KV, Karthik L, Raveendran S (2011) Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res 111:921–933

    Article  PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A (2008) Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res 03:325–331

    Article  Google Scholar 

  • Kamgang R, Hortense GK, Pascal W, Jean Alexis MN, Ervice V, Michel Archange P, Marie FT (2007) Activity of aqueous ethanol extract of Euphorbia prostrata ait on Shigella dysenteriae type 1-induced diarrhea in rats. Indian J Pharmacol 39:240–244

    Article  Google Scholar 

  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Anti-fungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals 22(2):235–242

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Valecha N, Jain T, Dash AP (2007) Burden of malaria in India: retrospective and prospective view. Am J Trop Med Hyg 77:69–78

    PubMed  Google Scholar 

  • Liu N, Xu Q, Zhu F, Zhang L (2006) Pyrethroid resistance in mosquitoes. Insect Sci 13:159–166

    Article  Google Scholar 

  • Macedo ME, Consoli RA, Grandi TS, dos Anjos AM, De Oliveira AB, Mendes NM, Queiróz RO, Zani CL (1997) Screening of Asteraceae (Compositae) plant extracts for larvicidal activity against Aedes fluviatilis (Diptera: Culicidae). Mem Inst Oswaldo Cruz 92:565–570

    Article  CAS  PubMed  Google Scholar 

  • Minjas JN, Sarda RK (1986) Laboratory observations on the toxicity of Swartzia madagascariens (Leguminaceae) extract to mosquito larvae. Trans R Soc Trop Med Hyg 80:460–461

    Article  CAS  PubMed  Google Scholar 

  • Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM (2010) ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23(19):733–739

    Article  CAS  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramfrez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Nadworny PL, Wang J, Tredget EE, Burrell RE (2008) Antiinflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine 4(3):241–251

    Article  CAS  PubMed  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Mahesh Kumar P (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res 111:2241–2251

    Article  PubMed  Google Scholar 

  • Parashar UK, Saxenaa PS, Srivastava A (2009) Bioinspired synthesis of silver nanoparticles. Dig J Nanomater Bios 4:159–166

    Google Scholar 

  • Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunkhe BK (2012) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non target fish Poicillia reticulata. Parasitol Res 111(2):555–562

    Article  PubMed  Google Scholar 

  • Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hitra against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006

    Article  PubMed  Google Scholar 

  • Rahman SJ, Sharma SK, Rajagopal R (1989) Manual on entomological surveillance of vector borne diseases. NICD, New Delhi

    Google Scholar 

  • Rahuman AA, Venkatesan P, Gopalakrishnan G (2008) Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad. Parasitol Res 103(6):1383–1390

    Article  PubMed  Google Scholar 

  • Rajkumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vector. Acta Trop 118:196–203

    Article  Google Scholar 

  • Ravi V (2006) Re-emergence of Chikungunya virus in India. Ind J Med Microbiol 24(2):83–84

    Article  CAS  Google Scholar 

  • Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharaya K (2010) Production of silver nanoparticles by a pathogenic fungus Bipolaris nodulasa and its antimicrobial activity. Dig J Nanomater Bios 4:887–895

    Google Scholar 

  • Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372:105–111

    Article  CAS  PubMed  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Article  PubMed  Google Scholar 

  • Santilli CV, Pulcinelli SH, Tokumoto MS, Briois V (2007) In situ UVvis and EXAFS studies of ZnO quantum-sized nanocrystals and Zn-HDS formations from sol–gel route. J Eur Ceram Soc 27:3691–3695

    Article  CAS  Google Scholar 

  • Sap-Iam N, Homklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas ST (2010) UV irradiation induced silver nanoparticles as mosquito larvicides. J Appl Sci 10(23):3132–3136, ISSN 1812–5654

    Article  CAS  Google Scholar 

  • Saravanan KS, Periyanayagam K, Ismail M (2007) Mosquito larvicidal properties of various extract of leaves and fixed oil from the seeds of Caesalpinia bonduc (L) Roxb. J Commun Dis 39(3):153–157

    PubMed  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2009) Amaranthus oleracea and Euphorbia hirta: natural potential larvicidal agents against the urban Indian malaria vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 106:171–176

    Article  PubMed  Google Scholar 

  • Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130

    Google Scholar 

  • Sondi I, Salopek SB (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as model for Gram negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Thirunavukkarasu S, Rahuman AA, Govindasamy R, Marimuthu S, Asokan B, Chidambaram J, Zahir AA, Elango G, Chinnaperumal K (2010) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Google Scholar 

  • Thuenemann AF, Ruland W (2000) Microvoids in polyacrylonitrile fibers: a small-angle X-ray scattering study. Macromol 33:1848–1852

    Article  CAS  Google Scholar 

  • Toloza AC, Lucía A, Zerba E, Masuh H, Picollo MI (2010) Eucalyptus essential oil toxicity against permethrin-resistant Pediculus humanus capitis (Phthiraptera: Pediculidae). Parasitol Res 106(2):409–414

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). Parasitol Res 112:4073–4085

    Article  PubMed  Google Scholar 

  • Wahab R, Ansari SG, Kim YS, Seo HK, Shin HS (2007) Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method. Appl Surf Sci 253:7622–7626

    Article  CAS  Google Scholar 

  • Watanabe M, Takebe S, Kobashi K (1991) High paraoxonhydrolyzing activity in organophosphorus insecticide-resistant mosquitoes. Chem Pharm Bull (Tokyo) 39(4):980–985

    Article  CAS  Google Scholar 

  • Willems & van den Wildenberg (2005) Roadmap report on nanoparticles. W&W, Barcelona

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva, WHO/CDS/WHOPES/GCDPP/1.3

  • Yadav A, Virendra D, Kathe AA, Sheela R, Deepti Y, Sundaramoorthy C, Vigneshwaran N (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29(6):641–645

    Article  CAS  Google Scholar 

  • Zarchi AAK, Mahmoodzadeh A, Vatani H (2006) A survey on malaria and some related factors in south east of Caspian Sea. Pak J Med Sci 22(4):489–492

    Google Scholar 

  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 43(3):278–284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the professor and head of the Department of Zoology, Annamalai University, for the laboratory facilities provided. The authors would also like to acknowledge the cooperation of staff members of the VCRC (ICMR), Pondicherry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marimuthu Govindarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veerakumar, K., Govindarajan, M., Rajeswary, M. et al. Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113, 1775–1785 (2014). https://doi.org/10.1007/s00436-014-3823-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3823-y

Keywords

Navigation