Skip to main content

Advertisement

Log in

Identification of very small embryonic like (VSEL) stem cells in bone marrow

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Bone marrow (BM) develops in mammals by the end of the second/beginning of the third trimester of gestation and becomes a major hematopoietic organ in postnatal life. The α-chemokine stromal derived factor-1 (SDF-1) to CXCR4 (\( G_{{\alpha i}} \)-protein-coupled seven transmembrane-spanning chemokine receptor) axis plays a major role in BM colonization by stem cells. By the end of the second trimester of gestation, BM becomes colonized by hematopoietic stem cells (HSC), which are chemoattracted from the fetal liver in a CXCR4-SDF-1-dependent manner. Whereas CXCR4 is expressed on HSC, SDF-1 is secreted by BM stroma and osteoblasts that line BM cavities. Mounting evidence indicates that BM also contains rare CXCR4+ pluripotent stem cells (PSC). Recently, our group has identified a population of CXCR4+ very small embryonic like stem cells in murine BM and human cord blood. We hypothesize that these cells are deposited during development in BM as a mobile pool of circulating PSC that play a pivotal role in postnatal tissue turnover, both of non-hematopoietic and hematopoietic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ (2004) Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110:3300–3305

    Article  PubMed  Google Scholar 

  • Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  PubMed  CAS  Google Scholar 

  • Anjos-Afonso F, Bonnet D (2007) Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 109:1298–1306

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, Zee R van der, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  • Danner S, Kajahn J, Geismann C, Klink E, Kruse C (2007) Derivation of oocyte-like cells from a clonal pancreatic stem cell line. Mol Hum Reprod 13:11–20

    Article  PubMed  CAS  Google Scholar 

  • De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    Article  PubMed  CAS  Google Scholar 

  • De Felici M, McLaren A (1982) Isolation of mouse primordial germ cells. Exp Cell Res 142:476–482

    Article  PubMed  Google Scholar 

  • D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  PubMed  CAS  Google Scholar 

  • Dyce PW, Zhu H, Craig J, Li J (2004) Stem cells with multilineage potential derived from porcine skin. Biochem Biophys Res Commun 316:651–658

    Article  PubMed  CAS  Google Scholar 

  • Dyce PW, Wen L, Li J (2006) In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol 8:384–390

    Article  PubMed  CAS  Google Scholar 

  • Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S (2005) Circulating osteoblast-lineage cells in humans. N Engl J Med 352:1959–1966

    Article  PubMed  CAS  Google Scholar 

  • Francavilla S, Zamboni L (1985) Differentiation of mouse ectopic germinal cells in intra- and perigonadal locations. J Exp Zool 233:101–109

    Article  PubMed  CAS  Google Scholar 

  • Gomperts BN, Belperio JA, Rao PN, Randell SH, Fishbein MC, Burdick MD, Strieter RM (2006) Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury. J Immunol 176:1916–1927

    PubMed  CAS  Google Scholar 

  • Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  • Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, Tschudy KS, Tilly JC, Cortes ML, Forkert R, Spitzer T, Iacomini J, Scadden DT, Tilly JL (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122:303–315

    Article  PubMed  CAS  Google Scholar 

  • Jordan HE (1917) The history of the primordial germ cells in the loggerhead turtle embryo. Proc Natl Acad Sci USA 3:271–275

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Koso H, Ouchi Y, Tabata Y, Aoki Y, Satoh S, Arai K, Watanabe S (2006) SSEA-1 marks regionally restricted immature subpopulations of embryonic retinal progenitor cells that are regulated by the Wnt signaling pathway. Dev Biol 292:265–276

    Article  PubMed  CAS  Google Scholar 

  • Kruse C, Kajahn J, Petschnik AE, Maass A, Klink E, Rapoport DH, Wedel T (2006) Adult pancreatic stem/progenitor cells spontaneously differentiate in vitro into multiple cell lineages and form teratoma-like structures. Ann Anat 188:503–517

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M, Ratajczak J, Rezzoug F, Ildstad ST, Bolli R, Ratajczak MZ (2004) Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 95:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 19:1118–1127

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Machalinski B, Ratajczak MZ (2006a) The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol Exp (Wars) 66:331–341

    Google Scholar 

  • Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006b) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M, Ildstad ST, Ratajczak J, Shields CB, Ratajczak MZ (2006c) Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20:18–28

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303

    Article  PubMed  CAS  Google Scholar 

  • LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    Article  PubMed  CAS  Google Scholar 

  • Lamoury FM, Croitoru-Lamoury J, Brew BJ (2006) Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1. Cytotherapy 8:228–242

    Article  PubMed  CAS  Google Scholar 

  • Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ, Lin YC, Chen SH, Yu J (2006) Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci USA 103:9530–9535

    Article  PubMed  CAS  Google Scholar 

  • Macchiarini P, Ostertag H (2004) Uncommon primary mediastinal tumours. Lancet Oncol 5:107–118

    Article  PubMed  Google Scholar 

  • Mann JR (2001) Imprinting in the germ line. Stem Cells 19:287–294

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (1992) Development of primordial germ cells in the mouse. Andrologia 24:243–247

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262:1–15

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Ferrer S, Prat S, Lukic A, Diego A, Badimon JJ, Fuster V, Nadal-Ginard B (2006) ES-like cells in the adult murine heart. IVth ISSCR Annual Meeting, June 2006, Toronto

  • Molyneaux K, Wylie C (2004) Primordial germ cell migration. Int J Dev Biol 48:537–544

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa T (2000) A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int J Hematol 72:408–411

    PubMed  CAS  Google Scholar 

  • Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, Gromoll J, Engel W (2006) Derivation of male germ cells from bone marrow stem cells. Lab Invest 86:654–663

    Article  PubMed  CAS  Google Scholar 

  • Oosterhuis JW, Looijenga LH (2005) Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5:210–222

    Article  PubMed  CAS  Google Scholar 

  • Palermo AT, Labarge MA, Doyonnas R, Pomerantz J, Blau HM (2005) Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol 279:336–344

    Article  PubMed  CAS  Google Scholar 

  • Pallante BA, Duignan I, Okin D, Chin A, Bressan MC, Mikawa T, Edelberg JM (2007) Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ Res 100:e1–e11

    Article  PubMed  CAS  Google Scholar 

  • Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662–1668

    Article  PubMed  CAS  Google Scholar 

  • Pochampally RR, Smith JR, Ylostalo J, Prockop DJ (2004) Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 103:1647–1652

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J (2004) Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells “hide out” in the bone marrow. Leukemia 18:29–40

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Machalinski B, Wojakowski W, Ratajczak J, Kucia M (2007) A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia 21:860–867

    PubMed  CAS  Google Scholar 

  • Sato S, Yoshimizu T, Sato E, Matsui Y (2003) Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development. Mol Reprod Dev 65:41–50

    Article  PubMed  CAS  Google Scholar 

  • Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95:13726–13731

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    PubMed  CAS  Google Scholar 

  • Taichman R, Reilly M, Verma R, Ehrenman K, Emerson S (2001) Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. Br J Haematol 112:438–448

    Article  PubMed  CAS  Google Scholar 

  • Togel F, Isaac J, Hu Z, Weiss K, Westenfelder C (2005) Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67:1772–1784

    Article  PubMed  Google Scholar 

  • Turnpenny L, Brickwood S, Spalluto CM, Piper K, Cameron IT, Wilson DI, Hanley NA (2003) Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells 21:598–609

    Article  PubMed  Google Scholar 

  • Upadhyay S, Zamboni L (1982) Ectopic germ cells: natural model for the study of germ cell sexual differentiation. Proc Natl Acad Sci USA 79:6584–6588

    Article  PubMed  CAS  Google Scholar 

  • Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Maslankiewicz K, Wyderka R, Ochala A, Ratajczak MZ (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110:3213–3220

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka Y, Ralston A, Stephenson RO, Rossant J (2006) Cell and molecular regulation of the mouse blastocyst. Dev Dyn 235:2301–2314

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Mann MR, Lee SS, Marh J, McCarrey JR, Yanagimachi R, Bartolomei MS (2003) Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 100:12207–12212

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, Herlyn M, Xu X (2006) Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 168:1879–1888

    Article  PubMed  CAS  Google Scholar 

  • Zeng L, Rahrmann E, Hu Q, Lund T, Sandquist L, Felten M, O’Brien TD, Zhang J, Verfaillie C (2006) Multipotent adult progenitor cells from swine bone marrow. Stem Cells 24:2355–2366

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Ratajczak.

Additional information

This work was supported by NIH grant R01 CA106281-01 to M.Z.R.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucia, M., Wysoczynski, M., Ratajczak, J. et al. Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tissue Res 331, 125–134 (2008). https://doi.org/10.1007/s00441-007-0485-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0485-4

Keywords

Navigation