Skip to main content

Advertisement

Log in

Effects of TGF-β1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Periodontal ligament (PDL) is a specialized connective tissue that influences the lifespan of the tooth. Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine, but little is known about the effects of TGF-β1 on PDL cells. Our aim has been to demonstrate the expression of TGF-β1 in rat PDL tissues and to evaluate its effects on the proliferation and gene expression in human PDL cells (HPLCs) and a human PDL stem/progenitor cell line, line 1-11, that we have recently developed. The expression of TGF-β1 in the entire PDL tissue was confirmed immunohistochemically, and both HPLCs and cell line 1-11 expressed mRNA from the TGF-β1, TGF-β type I receptor, and TGF-β type II receptor genes. Although exogenous TGF-β1 stimulated the proliferation of HPLCs, it did not upregulate the expression of alpha-smooth muscle actin (α-SMA), type I collagen (Col I), or fibrillin-1 (FBN1) mRNA or of α-SMA protein in HPLCs, whereas expression for these genes was attenuated by an anti-TGF-β1 neutralizing antibody. In contrast, exogenous TGF-β1 reduced the proliferation of cell line 1-11, although it upregulated the expression of α-SMA, Col I, and FBN1 mRNA and of α-SMA protein in this cell line. In addition, interleukin-1 beta stimulation significantly reduced the expression of TGF-β1 mRNA and protein in HPLCs. Thus, TGF-β1 seems to play an important role in inducing fibroblastic differentiation of PDL stem/progenitor cells and in maintaining the PDL apparatus under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal S, Chandra CS, Piesco NP, Langkamp HH, Bowen L, Baran C (1998) Regulation of periodontal ligament cell functions by interleukin-1beta. Infect Immun 66:932–937

    CAS  PubMed  Google Scholar 

  • Andriamanalijaona R, Felisaz N, Kim SJ, King-Jones K, Lehmann M, Pujol JP, Boumediene K (2003) Mediation of interleukin-1beta-induced transforming growth factor beta1 expression by activator protein 4 transcription factor in primary cultures of bovine articular chondrocytes: possible cooperation with activator protein 1. Arthritis Rheum 48:1569–1581

    Article  CAS  PubMed  Google Scholar 

  • Arora PD, McCulloch CA (1994) Dependence of collagen remodelling on alpha-smooth muscle actin expression by fibroblasts. J Cell Physiol 159:161–175

    Article  CAS  PubMed  Google Scholar 

  • Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154:871–882

    CAS  PubMed  Google Scholar 

  • Beertsen W, McCulloch CAG, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontology 13:20–40

    Article  CAS  Google Scholar 

  • Birgel M, Gottschling-Zeller H, Rohrig K, Hauner H (2000) Role of cytokines in the regulation of plasminogen activator inhibitor-1 expression and secretion in newly differentiated subcutaneous human adipocytes. Arterioscler Thromb Vasc Biol 20:1682–1687

    CAS  PubMed  Google Scholar 

  • Brady TA, Piesco NP, Buckly MJ, Langkamp HH, Bowen LL, Agarwal S (1998) Autoregulation of periodontal ligament cell phenotype and functions by transforming growth factor-beta1. J Dent Res 77:1779–1790

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, Mcmahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    CAS  PubMed  Google Scholar 

  • Dallas SL, Miyazono K, Skerry TM, Mundy GR, Bonewald LF (1995) Dual role for the latent transforming growth factor-β binding protein in storage of latent TGF-β in the extracellular matrix and as a structural matrix protein. J Cell Biol 131:539–549

    Article  CAS  PubMed  Google Scholar 

  • Freeman E (1994) Oral histology: development, structure, and function. In: Ten Cate AR (ed) Periodontium. Mosby, St. Louis, pp 276–312

    Google Scholar 

  • Fujii S, Maeda H, Wada N, Kano Y, Akamine A (2006) Establishing and characterizing human periodontal ligament fibroblasts immortalized by SV40T-antigen and hTERT gene transfer. Cell Tissue Res 324:117–125

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Maeda H, Wada N, Tomokiyo A, Saito M, Akamine A (2008) Investigating a clonal human periodontal ligament progenitor/stem cell line in vitro and in vivo. J Cell Physiol 215:743–749

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Shiba H, Thomas EVD, Kurihara H (2004) Differential effects of growth factors and cytokines on the synthesis of SPARC, DNA, fibronectin and alkaline phosphatase activity in human periodontal ligament cells. Cell Biol Int 28:281–286

    Article  CAS  PubMed  Google Scholar 

  • Gemmell E, Marshall RI, Seymour GJ (1997) Cytokine and prostaglandins in immune homeostasis and tissue destruction in periodontal disease. Periodontol 2000 14:112–143

    Article  CAS  PubMed  Google Scholar 

  • Ghosh AK, Yuan W, Mori Y, Varga J (2000) Smad-dependent stimulation of type I collagen gene expression in human skin fibroblasts by TGF-beta involves functional cooperation with p300/CBP transcriptional coactivators. Oncogene 19:3546–3555

    Article  CAS  PubMed  Google Scholar 

  • Godin I, Wylie CC (1991) TGF beta 1 inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture. Development 113:1451–1457

    CAS  PubMed  Google Scholar 

  • Heredia A, Villena J, Romaris M, Molist A, Bassols A (1996) The effect of TGF-beta 1 on cell proliferation and proteoglycan production in human melanoma cells depends on the degree of cell differentiation. Cancer Lett 109:39–47

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Mao Z, Wei X, Lin L, Chen L, Wang H, Fu X, Zhang J, Yu C (2009) Effects of transforming growth factor-β1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing. Matrix Biol 28:324–335

    Article  CAS  PubMed  Google Scholar 

  • Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB, Sakai LY (2003) Latent transforming growth factor-β binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem 278:2750–2757

    Article  CAS  PubMed  Google Scholar 

  • Katagiri T, Lee T, Takeshima H, Suda T, Tanaka H, Omura S (1990) Transforming growth factor-β modulates proliferation and differentiation of mouse clonal osteoblastic MC3T3-E1 cells depending on their maturation stages. Bone Miner 11:285–293

    Article  CAS  PubMed  Google Scholar 

  • Kenney MC, Zorapapel N, Atilano S, Chwa M, Ljubimov A, Brown D (2003) Insulin-like growth factor-I (IGF-I) and transforming growth factor-beta (TGF-beta) modulate tenascin-C and fibrillin-1 in bullous keratopathy stromal cells in vitro. Exp Eye Res 77:537–546

    Article  CAS  PubMed  Google Scholar 

  • Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors and new genetic tests of function in different organisms. Genes Dev 8:133–146

    Article  CAS  PubMed  Google Scholar 

  • Kissin EY, Lemarie R, Korn JH, Lafyatis R (2002) Transforming growth factor beta induces fibroblast fibrillin-1 matrix formation. Arthritis Rheum 46:3000–3009

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM, Gronthos S, Shi S, Wang S (2008) Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 26:1065–1073

    Article  PubMed  Google Scholar 

  • Luo DD, Fielding C, Phillips A, Fraser D (2009) Interleukin-1 beta regulates proximal tubular cell transforming growth factor beta-1 signalling. Nephrol Dial Tranplant 24:2655–2665

    Article  CAS  Google Scholar 

  • Maeda H, Nakano T, Tomokiyo A, Fujii S, Wada N, Monnouchi S, Hori K, Akamine A (2010) Mineral trioxide aggregate induces bone morphogenetic protein-2 expression and calcification in human periodontal ligament cells. J Endod 36:743–749

    Article  Google Scholar 

  • Masada MP, Persson JS, Kenney R, Page C, Allison AC (1990) Measurement of interleukin-1 alpha and -1 beta in gingival crevicular fluid: implications for periodontal disease. J Periodontal Res 25:156–163

    Article  CAS  PubMed  Google Scholar 

  • Matthew B, Naveen Y, Hung P, Michael T, Chang J (2002) Flexor tendon healing in vitro: effects of TGF-β on tendon cell collagen production. J Hand Surg 27:615–620

    Article  Google Scholar 

  • Nagatomo K, Komaki M, Sekiya I, Sakaguchi Y, Noguchi K, Oda S, Murata T, Ishikawa I (2006) Stem cell properties of human periodontal ligament cells. J Periodontal Res 41:303–310

    Article  CAS  PubMed  Google Scholar 

  • Narayanan AS, Page RC (1983) Connective tissues of the periodontium: a summary of current work. Coll Relat Res 3:33–64

    CAS  PubMed  Google Scholar 

  • Oka S, Oka K, Xu X, Sasaki T, Bringas P Jr, Chai Y (2007) Cell autonomous requirement for TGF-beta signaling during odontoblast differentiation and dentin matrix formation. Mech Dev 124:409–415

    Article  CAS  PubMed  Google Scholar 

  • Okubo K, Kobayashi M, Takiguchi T, Takada T, Ohazama A, Okamatsu Y, Hasegawa K (2003) Participation of endogenous IGF-I and TGF-β1 with enamel matrix derivative-stimulated cell growth in human periodontal ligament cells. J Periodont Res 38:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ono Y, Sensui H, Okutsu S, Nagatomi R (2007) Notch2 negatively regulates myofibroblastic differentiation of myoblasts. J Cell Physiol 210:358–369

    Article  CAS  PubMed  Google Scholar 

  • Seo BM, Miuram GS, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  CAS  PubMed  Google Scholar 

  • Sonoyama W, Liu Y, Fang D, Yamaza T, Seo M, Zhang C, Liu H, Gronthos S, Wang CY, Shi S, Wang S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE 1:1–8

    Article  Google Scholar 

  • Tomokiyo A, Maeda H, Fujii S, Wada N, Shima K, Akamine A (2008) Development of a multipotent clonal human periodontal ligament cell line. Differentiation 76:337–347

    Article  CAS  PubMed  Google Scholar 

  • Worapamorn W, Haase HR, Li H, Bartold PM (2001) Growth factors and cytokines modulate gene expression of cell-surface proteoglycans in human periodontal ligament cells. J Cell Physiol 186:448–456

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Maeda.

Additional information

This work was supported by grants-in-aid (projects 21390510, 21791942, 22390359, and 22592123) for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, S., Maeda, H., Tomokiyo, A. et al. Effects of TGF-β1 on the proliferation and differentiation of human periodontal ligament cells and a human periodontal ligament stem/progenitor cell line. Cell Tissue Res 342, 233–242 (2010). https://doi.org/10.1007/s00441-010-1037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1037-x

Keywords

Navigation