Skip to main content
Log in

The carbon charging of pines at the climatic treeline: a global comparison

  • Ecophysiology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The carbon charging of pines across the treeline ecotone of three different climatic zones (Mexico 19°N Pinus hartwegii, Swiss Alps 46°N P. cembra and northern Sweden 68°N P. sylvestris) was analyzed, to test whether a low-temperature-driven carbon shortage can explain high-elevation tree limits, and whether the length of the growing season affects the trees' carbon balance. We quantified the concentrations of non-structural carbohydrates (NSC) and lipids (acylglycerols) in all tree organs at three dates during the growing seasons across elevational transects from the upper end of the closed, tall forest (timberline) to the uppermost location where groups of trees ≥3 m in height occur (treeline). Mean ground temperatures during the growing season at the treelines were similar (6.1±0.7°C) irrespective of latitude. Across the individual transects, the concentrations of NSC and lipids increased with elevation in all organs. By the end of the growing season, all three species had very similar total mobile carbon (TMC) concentrations at the treeline (ca. 6% TMC in the aboveground dry biomass), suggesting no influence of the length of the growing season on tree carbon charging. At a temperate lowland reference site P. sylvestris reached only ca. 4% TMC in the aboveground dry biomass, with the 2% difference largely explained by higher lipid concentrations of treeline pines. We conclude that carbon availability is unlikely to be the cause of the altitudinal tree limit. It seems rather that low temperatures directly affect sink activity at the treeline, with surplus carbon stored in osmotically inactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Bernoulli M, Körner C (1999) Dry matter allocation in treeline trees. Phyton 39:7–11

    Google Scholar 

  • Cabrera HM (1996) Low temperature and altitudinal limits in plant ecosystems: Species responses to cold in tropical and subtropical mountains. Rev Chil Hist Nat 69:309–320

    Google Scholar 

  • Cavieres LA, Rada F, Azocar A, Garcia-Nunez C, Cabrera HM (2000) Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes. Acta Oecol 21:203–211

    Article  Google Scholar 

  • Chapin FS, Shaver GR (1989) Lack of latitudinal variations in graminoid storage reserves. Ecology 70:269–272

    Google Scholar 

  • Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Article  Google Scholar 

  • Domisch T, Finer L, Lehto T (2001) Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiol 21:465–472

    CAS  PubMed  Google Scholar 

  • Egger B, Einig W, Schlereth A, Wallenda T, Magel E, Loewe A, Hampp R (1996) Carbohydrate metabolism in one- and two-year-old spruce needles, and stem carbohydrates from three months before until three months after bud break. Physiol Plant 96:91–100

    CAS  Google Scholar 

  • Eggstein M, Kuhlmann E (1974) Triglyceride und Glycerin (alkalische Verseifung). In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol II. Verlag Chemie, Weinheim, pp 1871–1878

  • Fischer C, Höll W (1991) Food reserves of Scots pine (Pinus sylvestris L.) I. Seasonal changes in the carbohydrate and fat reserves of pine needles. Trees 5:187–195

    Google Scholar 

  • Fischer C, Höll W (1992) Food reserves of Scots pine (Pinus sylvestris L.). II. Seasonal changes and radial distribution of carbohydrate and fat reserves in pine wood. Trees 6:147–155

    Google Scholar 

  • Glerum C, Balatinezc JJ (1980) Formation and distribution of food reserves during autumn and their subsequent utilization in jack pine. Can J Bot 58:40–54

    CAS  Google Scholar 

  • Goldstein G, Rada F, Canales MO, Zabala O (1989) Leaf gas-exchange of 2 giant caulescent rosette species. Acta Oecol 10:359–370

    Google Scholar 

  • Gonzalez JA (1991) The annual TNC (total non-structural carbohydrates) cycles in two high mountain species: Woodsia montevidensis and Calandrinia acaulis. Bot Acta Cient Venez 42:276–280

    Google Scholar 

  • Grace J, Norton DA (1990) Climate and growth of Pinus sylvestris at its upper altitudinal limit in Scotland—evidence from tree growth-rings. J Ecol 78:601–610

    Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the treeline. Ann Bot 90:537–544

    Article  CAS  PubMed  Google Scholar 

  • Hoch G, Popp M, Körner C (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggest sink limitation of growth at the Swiss treeline. Oikos 98:361–374

    Article  CAS  Google Scholar 

  • Höll W (1985) Seasonal fluctuation of reserve material in the trunkwood of spruce [Picea abies (L.) Karst.]. J Plant Physiol 117:355–362

    Google Scholar 

  • Holtmeier FK (2000) Die Höhengrenzen der Gebirgswälder, 1st edn. Natur and Wissenschaft, Münster

  • Jobbagy EG, Jackson RB (2000) Global controls of forest line elevation in the northern and southern hemispheres. Global Ecol Biogeogr 9:253–268

    Article  Google Scholar 

  • Khutornoi OV, Velisevich SN, Vorob'ev VN (2001) Ecological variation in the morphological structure of the crown in Siberian stone pine at the timberline. Russ J Ecol 32:393–399

    Article  Google Scholar 

  • Kontunen-Soppela S, Lankila J, Lahdesmaki P, Laine K (2002) Response of protein and carbohydrate metabolism of Scots pine seedlings to low temperature. J Plant Physiol 159:175–180

    CAS  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Larcher W, Schmidt L, Tschager A (1973) Starke Fettspeicherung und hoher Kaloriengehalt bei Loiseleuria procumbens L. Desv. Oecol Plant 8:377–383

    Google Scholar 

  • Lauer W (1986) Vegetational zonation of the Neotropis and its change since the Ice-Age. Ber Dtsch Bot Ges 99:211–235

    Google Scholar 

  • Lauer W, Klaus D (1975) Geoecological investigations on the timberline of Pico de Oriza, Mexico. Arct Alp Res 7:315–330

    Google Scholar 

  • Leuschner C (1996) Timberline and alpine vegetation on the tropical and warm- temperate oceanic islands of the world: elevation, structure and floristics. Vegetatio 123:193–206

    Google Scholar 

  • Li MH, Hoch G, Körner C (2002) Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees 16:331–337

    CAS  Google Scholar 

  • Miehe G, Miehe S (1994) Zur oberen Waldgrenze in tropischen Gebirgen. Phytocoenologia 24:53–110

    Google Scholar 

  • Mooney HA, Billings WD (1965) Effects of altitude on carbohydrate content of mountain plants. Ecology 46:750–751

    Google Scholar 

  • Ohsawa M (1990) An interpretation of latitudinal patterns of forest limits in south and east-Asian mountains. J Ecol 78:326–339

    Google Scholar 

  • Oleksyn J, Modrzynski J, Tjoelker MG, Zytkowiak R, Reich PB, Karolewski P (1998) Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct Ecol 12:573–590

    Article  Google Scholar 

  • Oleksyn J, Zytkowiak R, Karlolewski P, Reich PB, Tjoelker MG (2000) Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations. Tree Physiol 20:837–847

    Google Scholar 

  • Pantis JD, Diamantoglou S, Margaris NS (1987) Altitudinal variation in total lipid and soluble sugar content in herbaceous plants on Mount-Olympus (Greece). Vegetatio 72:21–25

    Google Scholar 

  • Piispanen R, Saranpää P (2002) Neutral lipids and phospholipids in Scots pine (Pinus sylvestris) sapwood and heartwood. Tree Physiol 22:661–666

    CAS  PubMed  Google Scholar 

  • Pipp E, Larcher W (1987) Energiegehalte pflanzlicher Substanz: II. Ergebnisse der Datenverarbeitung. Sitzungsber Österr Akad Wiss Math Naturwiss Kl I:249–310

  • Popp M, Lied W, Meyer AJ, Richter A, Schiller P, Schwitte H (1996) Sample preservation for determination of organic compounds: microwave versus freeze-drying. J Exp Bot 47:1469–1473

    CAS  Google Scholar 

  • Rada F, Goldstein G, Azocar A, Meinzer F (1985) Daily and seasonal osmotic changes in a tropical treeline species. J Exp Bot 36:989–1000

    Google Scholar 

  • Rada F, Azocar A, Briceno B, Gonzalez J, Garcia NC (1996) Carbon and water balance in Polylepis sericea, a tropical treeline species. Trees 10:218–222

    Article  Google Scholar 

  • Saranpää P, Nyberg H (1987) Seasonal variation of neutral lipids in Pinus sylvestris L. sapwood and heartwood. Trees 1:139–144

    Google Scholar 

  • Stevens GC, Fox JF (1991) The causes of treeline. Annu Rev Ecol Syst 22:177–191

    Article  Google Scholar 

  • Sveinbjörnsson B (2000) North American and European treelines: external forces and internal processes controlling position. Ambio 29:388–395

    Google Scholar 

  • Tranquillini W (1959a) Die Stoffproduktion der Zirbe (Pinus cembra L.) an der Waldgrenze während eines Jahres. I. Standortklima und CO2-Assimilation. Planta 54:107–129

    CAS  Google Scholar 

  • Tranquillini W (1959b) Die Stoffproduktion der Zirbe (Pinus cembra L.) an der Waldgrenze während eines Jahres. II. Zuwachs und CO2-Bilanz. Planta 54:130–151

    CAS  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special references to the European Alps. Springer, Berlin Heidelberg New York

  • Troll C (1973) The upper timberlines in different climatic zones. Arct Alp Res 5:A3-A18

    Google Scholar 

  • Tschager A, Hilscher H, Franz S, Kull U, Larcher W (1982) Jahreszeitliche Dynamik der Fettspeicherung von Loiseleura procumbens und anderen Ericaceen der alpinen Zwergstrauchheide. Acta Oecol 3:119–134

    CAS  Google Scholar 

  • Vanninen P, Ylitalo H, Sievänen R, Mäkelä A (1996) Effects of age and site quality on the distribution of biomass in Scotts pine (Pinus sylvestris L.). Trees 10:231–238

    Article  Google Scholar 

  • Velazquez A, Cleef AM (1993) The plant communities of the volcanoes "Tlaloc" and "Pelado", Mexico. Phytocoenologia 22:145–191

    Google Scholar 

  • Velez V, Cavelier J, Devia B (1998) Ecological traits of the tropical treeline species Polylepis quadrijuga (Rosaceae) in the Andes of Colombia. J Trop Ecol 14:771–787

    Article  Google Scholar 

  • Wardle P (1993) Causes of alpine timberline: a review of the hypotheses. In: Alden J (ed) Forest development in cold climates. Plenum, New York, pp 89–103

  • Wardle P (1998) Comparison of alpine timberlines in New Zealand and the Southern Andes. R Soc N Z Misc Publ 48:69–90

    Google Scholar 

  • Webb WL, Kilpatrick KJ (1993) Starch content in douglas-fir—diurnal and seasonal dynamics. For Sci 39:359–367

    Google Scholar 

  • Wong SC (1990) Elevated atmospheric partial-pressure of CO2 and plant-growth. 2. Nonstructural carbohydrate content in cotton plants and its effect on growth-parameters. Photosynth Res 23:171–180

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Swiss National Science Foundation, project no. 31–55173.98. We thank the following persons and institutions for their support during the field campaign: R. Dirzo, R.I. Martinez and H. Vibrans (Mexico), M.H. Li and J. Paulsen (Basel) and N.Å. Andersson and the Abisko Research Station of the Royal Swedish Academy of Science (Abisko). We are grateful to M. Popp and A. Richter (Vienna) for providing analytical advice and GC-access, O. Bignucolo for his help with part of the NSC-analyses, R. Bänninger, B. Bildstein, R. Riedl and G. Schaer for their assistance with the sample preparation and T. Fabro and T. Zumbrunn for retrieving our data loggers in Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Hoch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoch, G., Körner, C. The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135, 10–21 (2003). https://doi.org/10.1007/s00442-002-1154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-002-1154-7

Keywords

Navigation