Skip to main content
Log in

Activity pattern of arctic reindeer in a predator-free environment: no need to keep a daily rhythm

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Arctic Cervids face considerable challenges in sustaining life in a harsh and highly seasonal environment, and when to forage is a key component of the survival strategy. We predict that a cervid maximizes net intake of energy to change the duration of feeding-ruminating cycles depending on season, and pays no attention to light or other activity-entraining cues. Still, in periods of bad weather it may pay energetically to reduce exposure and heat loss. We investigated environmental impact on the seasonal and daily activity pattern of a food-limited, predator-free arctic deer, the Svalbard reindeer. We found that the reindeer indeed had season-dependent feeding-rumination intervals, with no distinct peaks in activity at sunrise and sunset, as would be expected if animals maximize energy intake rates in predator-free environments. However, they temporarily reduced activity when exposed to low temperature and increased precipitation during winter, possibly to conserve energy. We provide insight into the behavioural strategy of Svalbard reindeer which enables them to cope with such an extreme environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aanes R, Sæther B-E, Øritsland NA (2000) Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation. Ecography 23:437–443

    Article  Google Scholar 

  • Agresti A (2002) Cateorical data analysis. Wiley, New York

    Google Scholar 

  • Albon SD, Stien A, Irvine RJ, Langvatn R, Ropstad E, Halvorsen O (2002) The role of parasites in the dynamics of a reindeer population. Proc R Soc Lond Ser B 269:1625–1632

    Article  CAS  Google Scholar 

  • Bakker ES, Reiffers RC, Olff H, Gleichman JM (2005) Experimental manipulation of predation risk and food quality effect on grazing behaviour in a central-place foraging herbivore. Oecologia 146:157–167

    Article  PubMed  CAS  Google Scholar 

  • Beier P, McCullough DR (1990) Factors influencing white-tailed deer activity patterns and habitat use. Wildl Monogr 109:1–51

    Google Scholar 

  • Belovsky GE (1978) Diet optimization in a generalist herbivore: the moose. Theor Popul Biol 14:105–134

    Article  PubMed  CAS  Google Scholar 

  • Belovsky GE (1981) Optimal activity times and habitat choice of moose. Oecologia 48:22–30

    Article  Google Scholar 

  • Belovsky GE, Slade JB (1986) Time budget of grassland herbivores: body size similarities. Oecologia 70:53–62

    Article  Google Scholar 

  • Bergman CM, Fryxell JM, Gates CC, Fortin D (2001) Ungulate foraging strategies: energy maximizing or time minimizing? J Anim Ecol 70:289–301

    Article  Google Scholar 

  • Blight J, Cloudsley-Thompson JL, MacDonald AG (1976) Environmental physiology of animals. Wiley, New York

    Google Scholar 

  • Bowyer RT (1981) Activity, movement, and distribution of Roosevelt elk during rut. J Mammal 62:574–582

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cederlund G (1981) Daily and seasonal activity pattern of roe deer in a boreal habitat. Swed Wildl Res 11:315–353

    Google Scholar 

  • Cederlund G (1989) Activity patterns in moose and roe deer in a north boreal forest. Holarct Ecol 12:39–45

    Google Scholar 

  • Chan K-S, Mysterud A, Øritsland NA, Severinsen T, Stenseth NC (2005) Continuous and discrete extreme climatic events affecting the dynamics of a high arctic reindeer population. Oecologia 145:556–563

    Article  PubMed  Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136

    Article  PubMed  CAS  Google Scholar 

  • Colman JE, Pedersen C, Hjermann DO, Holand Ø, Moe SR, Reimers E (2001) Twenty-four-hour feeding and lying patterns of wild reindeer Rangifer tarandus tarandus in summer. Can J Zool 79:2168–2175

    Article  Google Scholar 

  • Conradt L, Clutton-Brock TH, Guinness FE (2000) Sex differences in weather sensitivity can cause habitat segregation: red deer as an example. Anim Behav 59:1049–1060

    Article  PubMed  Google Scholar 

  • Cuyler CL, Øritsland NA (1986) Seasonal variations and responses to normal activity of the deep body temperature in the Svalbard reindeer (Rangifer tarandus platyrhuncus). Rangifer Spec Issue 1:81–85

    Google Scholar 

  • Cuyler CL, Øritsland NA (1993) Metabolic strategies for winter survival by Svalbard reindeer. Can J Zool 71:1787–1792

    Article  Google Scholar 

  • Cuyler CL, Øritsland NA (2002a) Do seasonal changes in Svalbard reindeer fur have relevance for heat transfer? Rangifer 22:133–142

    Google Scholar 

  • Cuyler CL, Øritsland NA (2002b) Effect of wind on Svalbard reindeer fur insulation. Rangifer 22:93–99

    Google Scholar 

  • Cuyler CL, Øritsland NA (2004) Rain more important than windchill for insulation loss in Svalbard reindeer fur. Rangifer 24:7–14

    Google Scholar 

  • Demarchi MW, Bunnell FL (1995) Forest cover selection and activity of cow moose in summer. Acta Theriol 40:23–36

    Google Scholar 

  • Demment MW, Van Soest PJ (1985) A nutritional explanation for body size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672

    Article  Google Scholar 

  • Derocher AE, Wiik Ø, Bangjord G (2000) Predation of Svalbard reindeer by polar bears. Polar Biol 23:675–678

    Article  Google Scholar 

  • Erriksson LO, Kallqvist ML, Mossing T (1981) Seasonal development of circadian and short-term activity in captive reindeer, Rangifer tarandus L. Oecologia 48:64–70

    Article  Google Scholar 

  • Georgii B (1981) Activity patterns of female red deer (Cervus elaphus L.) in the Alps. Oecologia 49:127–136

    Article  Google Scholar 

  • Georgii B (1984) Activity patterns of free-ranging red deer Cervus elaphus L. Acta Zool Fennica 172:81–83

    Google Scholar 

  • Georgii B, Schröder W (1983) Home range and activity patterns of male red deer (Cervus elaphus L.) in the alps. Oecologia 58:238–248

    Article  Google Scholar 

  • Green RA, Bear GD (1990) Seasonal cycles and daily activity patterns of Rocky mountain elk. J Wildl Manage 54:272–279

    Article  Google Scholar 

  • Hagemoen RIM, Reimers E (2002) Reindeer summer activity pattern in relation to weather and insect harassment. J Anim Ecol 71:883–892

    Article  Google Scholar 

  • Hamr J, Czakert H (1986) Circadian activity rhythms of chamois in northern Tyrol, Austria. The Northern Wild Sheep Council, Helena, Montana pp 178–191

    Google Scholar 

  • Hanley TA (1982) Cervid activity patterns in relation to foraging constraints: western Washington. Northwest Sci 56:208–217

    Google Scholar 

  • Hansen MC (1996) Winter foraging ecology of Dall’s sheep in the Brooks Range, Alaska. Ph.D thesis, University of Alaska, Fairbanks

  • Hanssen-Bauer I, Kristensen Solås M, Steffensen EL (1990) The climate of Spitsbergen. DNMI-Report 39/90 Klima, pp 1–23

  • Kastnes K (1979) Svalbardreinens aktivitetsmønster gjennom året (in Norwegian). Cand. scient. thesis. University of Oslo

  • Kay RNB, Staines BW (1981) The nutrition of the red deer. Nutr Abstr Rev B 51:601–623

    Google Scholar 

  • Kohler J, Aanes R (2004) Effect of winter snow and ground-icing on a Svalbard reindeer population: results of a simple snowpack model. Arct Antarct Alp Res 36:333–341

    Article  Google Scholar 

  • Krüll F (1976) Zeitgebers for animals in the continuous daylight of the high arctic summer. Oecologia 24:149–158

    Article  Google Scholar 

  • Leuthold W (1977) African ungulates. Zoophys Ecol 8:1–307

    Google Scholar 

  • Loe LE, Irvine RJ, Bonenfant C, Stien A, Langvatn R, Albon SD, Mysterud A, Stenseth NC (2006) Testing five hypotheses of sexual segregation in an arctic ungulate. J Anim Ecol 75:485–496

    Article  PubMed  Google Scholar 

  • Maier JAK, White RG (1998) Timing and synchrony of activity in caribou. Can J Zool 76:1999–2009

    Article  Google Scholar 

  • Major H, Nagy J (1972) Geology of the Adventdalen map area. Nor Polarinstitutt Skrifter 138:

  • Mangel M, Clark CW (1986) Towards a unified foraging theory. Ecology 67:1127–1138

    Article  Google Scholar 

  • Mcnamara JM, Houston AI (1986) The common currency for behavioral decisions. Am Nat 127:358–378

    Article  Google Scholar 

  • Moen AN (1973) Wildlife ecology. W.H. Freeman, San Fransciso

    Google Scholar 

  • Morschel FM (1999) Use of climatic data to model the presence of oestrid flies in caribou herds. J Wildl Manage 63:588–593

    Article  Google Scholar 

  • Morschel FH, Klein DR (1997) Effects of weather and parasitic insects on behavior and group dynamics of caribou of the Delta Herd, Alaska. Can J Zool 75:1659–1670

    Google Scholar 

  • Nilssen KJ, Sundsfjord JA, Blix AS (1984) Regulation of Metabolic-Rate in Svalbard and Norwegian Reindeer. Am J Physiol 247:R837–R841

    PubMed  CAS  Google Scholar 

  • Øritsland NA (1974) A windchill and solar radiation index for homeotherms. J Theor Biol 47:413–420

    Article  PubMed  Google Scholar 

  • Øritsland NA, Alendal E (1986) Svalbardreinen. Bestandens størrelse og livshistorie (in Norwegian). In: Øritsland NA (ed) Svalbardreinen og dens livsgrunnlag. Universitetsforlaget, Oslo, pp 72–91

    Google Scholar 

  • Owen-Smith N (1988) Megaherbivores. the influence of very large body size on ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Owen-Smith N (2002) Adaptive herbivore ecology: from resources to populations in variable environments. Cambridge University Press, Cambridge

    Google Scholar 

  • Owen-Smith N, Novellie P (1982) What should a clever ungulate eat? Am Nat 119:151–178

    Article  Google Scholar 

  • R Development Core Team (2006) R: A language and environment for statistical computing. [2.2.0.]. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reierth E, Stokkan KA (1998) Activity rhythm in high Arctic Svalbard ptarmigan (Lagopus mutus hyperboreus). Can J Zool 76:2031–2039

    Article  Google Scholar 

  • Schmitz OJ (1991) Thermal constraints and optimization of winter feeding and habitat choice in white-tailed deer. Holarct Ecol 14:104–111

    Google Scholar 

  • Schoener TW (1971) Theory of feeding strategies. Ann Rev Ecol Syst 2:369–403

    Article  Google Scholar 

  • Sinclair ARE, Mduma SAR, Brashares JS (2003) Patterns of predation in a diverse predator-prey system. Nature 425:288–290

    Article  PubMed  CAS  Google Scholar 

  • Skogland T (1984) Wild reindeer foraging-niche organization. Holarct Ecol 7:345–379

    Google Scholar 

  • Staaland H, Jacobsen E, White RG (1979) Comparison of the digestive tract in Svalbard and Norwegian reindeer. Arct Antarct Alp Res 11:457–466

    Google Scholar 

  • Staaland H, Øritsland NA, White RG (1988) Digestion of energy and nutrients in Svalbard reindeer. Rangifer 8:2–10

    Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Tyler NJC (1986a) Reinen i Adventdalen (in Norwegian). In: Øritsland NA (ed) Svalbardreinen og dens livsgrunnlag. Universitetsforlaget, Oslo, pp 143–159

    Google Scholar 

  • Tyler NJC (1986b) The relationship between the fat content of Svalbard reindeer in autumn and their death from starvation in winter. Rangifer Special Issue No 1:311–314

    Google Scholar 

  • Tyler NJC (1991) Short-term behavioral responses of Svalbard reindeer Rangifer tarandus platyrhynchus to direct provocation by a snowmobile. Biol Cons 56:179–194

    Article  Google Scholar 

  • van der Knaap WO (1989) Past vegetation and reindeer on Edgeøya Spitsbergen between c. 7900 and c. 3800 BP, studied by the means peat layers and reindeer fecal pellets. J Biogeogr 16:379–394

    Article  Google Scholar 

  • van Oort BEH, Tyler NJC, Gerkema MP, Folkow L, Schytte-Blix A, Stokkan KA (2005) Circadian organization in reindeer. Nature 438:1095–1096

    Article  PubMed  CAS  Google Scholar 

  • van Oort BEH, Tyler NJC, Storeheier PV, Stokkan KA (2004) The performance and validation of a data logger for long-term determination of activity in free-ranging reindeer, Rangifer tarandus L. Appl Anim Behav Sci 89:299–308

    Article  Google Scholar 

  • Weladji RB, Holand Ø, Almoy T (2003) Use of climatic data to assess the effect of insect harassment on the autumn weight of reindeer (Rangifer tarandus) calves. J Zool 260:79–85

    Article  Google Scholar 

  • Woods SN (2006) Generalized additive models: an introduction with R. Taylor and Francis. CRC Press, London

    Google Scholar 

Download references

Acknowledgments

The field work and data acquisition were supported by the reindeer research projects at the Norwegian Polar Institute. We are grateful to the Research Council of Norway for support to LEL, CB and AM (YFF project) and to Clement Calenge for statistical advice. Finally, we thank Jean-Michel Gaillard, Norman Owen-Smith and two anonymous referees for valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atle Mysterud.

Additional information

Communicated by Jean-Michel-Gaillard.

We dedicate this paper to Nils Are Øritsland (born 1939) who died 24th of November 2006 of cancer. Norway lost a real “old-timer” with an extraordinary experience from the Arctic. We have lost a good colleague.

Electronic supplementary material

Below is the link to the electronic supplementary material.

442_2007_681_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loe, L.E., Bonenfant, C., Mysterud, A. et al. Activity pattern of arctic reindeer in a predator-free environment: no need to keep a daily rhythm. Oecologia 152, 617–624 (2007). https://doi.org/10.1007/s00442-007-0681-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-007-0681-7

Keywords

Navigation