Skip to main content
Log in

Beyond global change: lessons from 25 years of CO2 research

  • Special Topic: In Honor of Christian Körner
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Over the past 25 years, countless experiments have been conducted on the impact of increased atmospheric CO2 concentration on various plants and ecosystems. While this research was motivated to better understand and predict how rising CO2 will affect the structure and function of ecosystems in the future, it also shed light on some general, CO2-research independent, aspects in ecological research. Interestingly, it is these general aspects that continue to create confusion and lead to misinterpretation. Here, we focus on seven interrelated key issues including (1) the confusion between fluxes and pools, (2) the stoichiometric aspects of growth and biomass production, (3) resource allocation within organisms, (4) data scaling and the choice of a reference metric, (5) the consideration of time and timing (experimental duration, ontogenetic shifts), (6) confounding and second-order (indirect or feedback) effects, and (7) the key role of biodiversity. The principles deriving from addressing these issues relate strongly to each other. Their concurrent consideration requires experimenters and modellers to likewise maintain a broad, holistic perspective. In this synthesis, we attempt to show how appropriate consideration of these principles can greatly enhance the assessment of the validity, plausibility and generality of experimental and modelling results. We conclude that neglecting to adequately address these key issues in ecological research may lead to overestimations of measured responses and/or simplistic interpretations. Our examples mostly originate from research on plant responses to elevated atmospheric CO2, but are also applicable to other areas of ecological research. We provide a checklist for the planning of ecological field experiments and the interpretation of their results that may help in avoiding common pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO(2) enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol 165:351–371

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  PubMed  CAS  Google Scholar 

  • Arnone JA, Körner C (1995) Soil and biomass carbon pools in model communities of tropical plants under elevated CO2. Oecologia 104:61–71

    Article  Google Scholar 

  • Asshoff R, Zotz G, Körner C (2006) Growth and phenology of mature temperate forest trees in elevated CO2. Glob Change Biol 12:848–861

    Article  Google Scholar 

  • Bazzaz FA, Grace J (1997) Plant resource allocation. Academic, San Diego

    Google Scholar 

  • Bernal S, Hedin LO, Likens GE, Gerber S, Buso DC (2012) Complex response of the forest nitrogen cycle to climate change. Proc Natl Acad Sci USA 109:3406–3411

    Article  PubMed  CAS  Google Scholar 

  • Bloom AJ, Chapin FS III, Mooney HA (1985) Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Change Biol 12:862–882

    Article  Google Scholar 

  • Bolker BM, Pacala SW, Bazzaz FA, Canham CD, Levin SA (1995) Species-diversity and ecosystem response to carbon-dioxide fertilization—conclusions from a temperate forest model. Glob Change Biol 1:373–381

    Article  Google Scholar 

  • Brouwer R (1962) Distribution of dry matter in the plant. Netherlands. J Agric Sci 10:361–376

    Google Scholar 

  • Callaway RM, DeLucia EH, Thomas EM, Schlesinger WH (1994) Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth-rate of ponderosa pine in different CO2 and temperature regimes. Oecologia 98:159–166

    Article  Google Scholar 

  • Ceulemans R, Mousseau M (1994) Tansley Review No-71—effects of elevated atmospheric CO2 on woody-plants. New Phytol 127:425–446

    Article  Google Scholar 

  • Chapin FS III, McFarland J, McGuire AD, Euskirchen ES, Ruess RW, Kielland K (2009) The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences. J Ecol 97:840–850

    Article  CAS  Google Scholar 

  • Clark DA, Clark DB (1992) Life-history diversity of canopy and emergent trees in a neotropical rain-forest. Ecol Monogr 62:315–344

    Article  Google Scholar 

  • Cohen L (1988) Everybody Knows. I’m Your Man. Sony Music Entertainment (Canada) Inc., Toronto

  • Cramer W et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373

    Article  Google Scholar 

  • Curtis PS, Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • de Graaff M-A, van Groenigen K-J, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–2091

    Article  Google Scholar 

  • Drake JE et al (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO(2). Ecol Lett 14:349–357

    Article  PubMed  Google Scholar 

  • Elser JJ et al (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550

    Article  Google Scholar 

  • Erice G, Sanz-Sáez A, Aranjuelo I, Irigoyen JJ, Aguirreolea J, Avice J-C, Sánchez-Díaz M (2011) Photosynthesis, N2 fixation and taproot reserves during the cutting regrowth cycle of alfalfa under elevated CO2 and temperature. J Plant Physiol 168:2007–2014

    Article  PubMed  CAS  Google Scholar 

  • Feng XH (1999) Trends in intrinsic water-use efficiency of natural trees for the past 100–200 years: a response to atmospheric CO2 concentration. Geochim Cosmochim Acta 63:1891–1903

    Article  CAS  Google Scholar 

  • Field CB, Jackson RB, Mooney HA (1995) Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ 18:1214–1225

    Article  Google Scholar 

  • Finzi AC, Moore DJP, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Hyun-Seok K, Matamala R, McCarthy HR, Oren R, Pippen JS, Schlesinger WH (2006) Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87:15–25

    Article  PubMed  Google Scholar 

  • Friend AD (2010) Terrestrial plant production and climate change. J Exp Bot 61:1293–1309

    Article  PubMed  CAS  Google Scholar 

  • Gedroc JJ, McConnaughay KDM, Coleman JS (1996) Plasticity in root shoot partitioning: optimal, ontogenetic, or both? Funct Ecol 10:44–50

    Article  Google Scholar 

  • Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning, and yield. Annu Rev Plant Physiol Plant Mol Biol 32:485–509

    Article  CAS  Google Scholar 

  • Granados J, Körner C (2002) In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Glob Change Biol 8:1109–1117

    Article  Google Scholar 

  • Hagedorn F, van Hees PAW, Handa IT, Hättenschwiler S (2008) Elevated CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Glob Biogeochem Cycles 22:GB2004. doi:10.1029/2007GB003026

  • Hagedorn F, Martin M, Rixen C, Rusch S, Bebi P, Zürcher A, Siegwolf RTW, Wipf S, Escape C, Roy J, Hättenschwiler S (2010) Short-term responses of ecosystem carbon fluxes to experimental soil warming at the Swiss alpine treeline. Biogeochemistry 97:7–19

    Article  CAS  Google Scholar 

  • Handa IT, Körner C, Hattenschwiler S (2005) A test of the tree-line carbon limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology 86:1288–1300

    Article  Google Scholar 

  • Handa IT, Körner C, Hättenschwiler S (2006) Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment. Glob Change Biol 12:2417–2430

    Article  Google Scholar 

  • Hättenschwiler S, Körner C (1996) System-level adjustments to elevated CO2 in model spruce ecosystems. Glob Change Biol 2:377–387

    Article  Google Scholar 

  • Hättenschwiler S, Körner C (1998) Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition. Oecologia 113:104–114

    Article  Google Scholar 

  • Hättenschwiler S, Körner C (2000) Tree seedling responses to in situ CO2-enrichment differ among species and depend on understorey light availability. Glob Change Biol 6:213–226

    Article  Google Scholar 

  • Hättenschwiler S, Körner C (2003) Does elevated CO2 facilitate naturalization of the non-indigenous Prunus laurocerasus in Swiss temperate forests? Funct Ecol 17:778–785

    Article  Google Scholar 

  • Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997a) Morphological adjustments of mature Quercus ilex trees to elevated CO2. Acta Oecol 18:361–365

    Article  Google Scholar 

  • Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997b) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Glob Change Biol 3:463–471

    Article  Google Scholar 

  • Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21

    PubMed  Google Scholar 

  • Hoch G, Körner C (2012) Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob Ecol Biogeogr 21:861–871

    Google Scholar 

  • Hoch G, Popp M, Körner C (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98:361–374

    Article  CAS  Google Scholar 

  • Holtum JAM, Winter K (2010) Elevated CO2 and forest vegetation: more a water issue than a carbon issue? Funct Plant Biol 37:694–702

    Article  Google Scholar 

  • Idso SB, Kimball BA (1993) Tree growth in carbon-dioxide enriched air and its implications for global carbon cycling and maximum levels of atmospheric CO2. Glob Biogeochem Cycles 7:537–555

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Iversen CM, Ledford J, Norby RJ (2008) CO(2) enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytol 179:837–847

    Article  PubMed  CAS  Google Scholar 

  • Iversen CM, Hooker TD, Classen AT, Norby RJ (2011) Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated CO(2). Glob Change Biol 17:1130–1139

    Article  Google Scholar 

  • Jackson RB, Cook CW, Pippen JS, Palmer SM (2009) Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology 90:3352–3366

    Article  PubMed  Google Scholar 

  • Jacobs CMJ, de Bruin HAR (1997) Predicting regional transpiration at elevated atmospheric CO2: influence of the PBL-vegetation interaction. J Appl Meteorol 36:1663–1675

    Article  Google Scholar 

  • Jasoni RL, Smith SD, Arnone JA (2005) Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Glob Change Biol 11:749–756

    Article  Google Scholar 

  • Keel S, Siegwolf RTW, Körner C (2006) Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytol 172:319–329

    Article  PubMed  CAS  Google Scholar 

  • Kimball BA, Mauney JR, Nakayama FS, Idso SB (1993) Effects of increasing atmospheric CO2 on vegetation. Vegetation 104:65–75

    Article  Google Scholar 

  • Kimball BA, Idso SB, Johnson S, Rillig MC (2007) Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Glob Change Biol 13:2171–2183

    Article  Google Scholar 

  • King JS, Hanson PJ, Bernhardt E, DeAngelis P, Norby RJ, Pregitzer KS (2004) A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Glob Change Biol 10:1027–1042

    Article  Google Scholar 

  • Knapp PA, Soule PT (2011) Increasing water-use efficiency and age-specific growth responses of old-growth ponderosa pine trees in the Northern Rockies. Glob Change Biol 17:631–641

    Article  Google Scholar 

  • Kobe RK, Pacala SW, Silander JA, Canham CD (1995) Juvenile tree survivorship as a component of shade tolerance. Ecol Appl 5:517–532

    Article  Google Scholar 

  • Körner C (1999) Alpine plants: stressed or adapted? In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell, Oxford, pp 297–311

  • Körner C (2003a) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Körner C (2003b) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Körner C (2003c) Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. Philos Trans R Soc Lond A 361:2023–2041

    Article  Google Scholar 

  • Körner C (2003d) Slow in, rapid out—carbon flux studies and Kyoto targets. Science 300:1242–1243

    Article  PubMed  Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  PubMed  CAS  Google Scholar 

  • Körner C (2009a) Biological Carbon sinks: turnover must not be confused with capital! Gaia-Ecol Perspect Sci Soc 18:288–293

    Google Scholar 

  • Körner C (2009b) Responses of humid tropical trees to rising CO(2). Annu Rev Ecol Evol Syst 40:61–79

    Article  Google Scholar 

  • Körner C, Arnone JA (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257:1672–1675

    Article  PubMed  Google Scholar 

  • Körner C et al (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Körner C, Morgan J, Norby R (2007) Terrestrial ecosystems in a changing world. CO2 fertilization: when, where, how much?. Springer, Berlin

    Google Scholar 

  • Körner C, Stöcklin J, Reuther-Thiebaud L, Pelaez-Riedl S (2008) Small differences in arrival time influence composition and productivity of plant communities. New Phytol 177:698–705

    Article  PubMed  Google Scholar 

  • Langley JA, Megonigal JP (2010) Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466:96–99

    Article  PubMed  CAS  Google Scholar 

  • Langley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG, Megonigal JP (2009) Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2. Soil Biol Biochem 41:54–60

    Article  CAS  Google Scholar 

  • Lauber W, Körner C (1997) In situ stomatal responses to long-term CO2 enrichment in calcareous grassland plants. Acta Oecol 18:221–229

    Article  Google Scholar 

  • Le Quere C et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  CAS  Google Scholar 

  • Leakey ADB, Lau JA (2012) Evolutionary context for understanding and manipulating plant responses to past, present, and future atmospheric [CO2]. Philos Trans R Soc Lond B 367:613–629

    Article  CAS  Google Scholar 

  • Leuzinger S, Zotz G, Asshoff R, Korner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol 25:641–650

    Article  PubMed  Google Scholar 

  • Leuzinger S, Luo YQ, Beier C, Dieleman W, Vicca S, Korner C (2011) Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 26:236–241

    Article  PubMed  Google Scholar 

  • Liberloo M et al (2006) Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world. Glob Change Biol 12:1094–1106

    Article  Google Scholar 

  • Luo YQ, Reynolds JF (1999) Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80:1568–1583

    Article  Google Scholar 

  • Luo Y, Weng E (2011) Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol Evol 26:96–104

    Article  PubMed  Google Scholar 

  • Luo Y et al (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Luo YQ et al (2011) Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Glob Change Biol 17:843–854

    Article  Google Scholar 

  • Matthews R (2000) Storks Deliver Babies (p = 0.008). Teach Stat 22:36–38

    Article  Google Scholar 

  • Millard P, Sommerkorn M, Grelet G-A (2007) Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytol 175:11–28

    Article  PubMed  CAS  Google Scholar 

  • Morford SL, Houlton BZ, Dahlgren RA (2011) Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature 477:U78–U88

    Article  CAS  Google Scholar 

  • Morgan JA, Pataki DE, Körner C, Clark H, Del Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JP, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004) Water relations in grassland and desert ecosystems exposed to elevated CO2. Oecologia 140:11–25

    Article  PubMed  CAS  Google Scholar 

  • Muller B et al (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729

    Article  PubMed  CAS  Google Scholar 

  • Murray MB, Leith ID, Jarvis PG (1996) The effect of long term CO2 enrichment on the growth, biomass partitioning and mineral nutrition of Sitka spruce (Picea sitchensis (Bong) Carr). Trees Struct Funct 10:393–402

    Google Scholar 

  • Niklaus PA, Körner C (2004) Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol Monogr 74:491–511

    Article  Google Scholar 

  • Niklaus PA, Spinnler D, Körner C (1998) Soil moisture dynamics of calcareous grassland under elevated CO2. Oecologia 117:201–208

    Article  Google Scholar 

  • Norby RJ (2010) ORNL net primary productivity data, Oak Ridge National Laboratory. In: Carbon Dioxide Information Analysis Center, U.S. Department of Energy. http://cdiac.ornl.gov

  • Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42(42):181–203

    Article  Google Scholar 

  • Norby RJ, Gunderson CA, Wullschleger SD, Oneill EG, McCracken MK (1992) Productivity and compensatory responses of yellow-poplar trees in elevated CO2. Nature 357:322–324

    Article  Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22:683–714

    Article  CAS  Google Scholar 

  • Norby RJ, Hartz-Rubin JS, Verbrugge MJ (2003) Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Glob Change Biol 9:1792–1801

    Article  Google Scholar 

  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004) Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci USA 101:9689–9693

    Article  PubMed  CAS  Google Scholar 

  • Norby RJ et al (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056

    Article  PubMed  CAS  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO(2) enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373

    Article  PubMed  CAS  Google Scholar 

  • Oberhuber W, Swidrak I, Pirkebner D, Gruber A (2011) Temporal dynamics of nonstructural carbohydrates and xylem growth in Pinus sylvestris exposed to drought. Can J For Res Rev Canadienne De Recherche Forestiere 41:1590–1597

    Article  Google Scholar 

  • Oren R et al (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472

    Article  PubMed  CAS  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlaykov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Nature 399:429–436

    Article  CAS  Google Scholar 

  • Polis GA (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86:3–15

    Article  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    Article  PubMed  CAS  Google Scholar 

  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Oren R (2008) Mycorrhizal and rhizomorph dynamics in a loblolly pine forest during 5 years of free-air-CO2-enrichment. Glob Change Biol 14:1252–1264

    Article  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Reich PB, Tjoelker MG, Machado J-L, Oleksyn J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439:457–461

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JF, Thornley JHM (1982) A shoot: root partitioning model. Ann Bot 49:585–597

    Google Scholar 

  • Ries L, Sisk TD (2004) A predictive model of edge effects. Ecology 85:2917–2926

    Article  Google Scholar 

  • Scheffer M et al (2006) Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112:227–231

    Article  Google Scholar 

  • Schleppi P, Bucher-Wallin I, Hagedorn F, Koerner C (2012) Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE). Glob Change Biol 18:757–768

    Article  Google Scholar 

  • Sherratt TN, Wilkinson DM (2010) Big questions in ecology and evolution. Oxford University Press, New York

    Google Scholar 

  • Spinnler D, Egli P, Körner C (2002) Four-year growth dynamics of beech-spruce model ecosystems under CO2 enrichment on two different forest soils. Trees Struct Funct 16:423–436

    Article  CAS  Google Scholar 

  • Stöcklin J, Körner C (1999) Interactive effects of elevated CO2, P availability and legume presence on calcareous grassland: results of a glasshouse experiment. Funct Ecol 13:200–209

    Article  Google Scholar 

  • Taneva L, Pippen JS, Schlesinger WH, Gonzalez-Meler MA (2006) The turnover of carbon pools contributing to soil CO2 and soil respiration in a temperate forest exposed to elevated CO2 concentration. Glob Change Biol 12:983–994

    Article  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Tricker PJ et al (2009) Water use of a bioenergy plantation increases in a future high CO2 world. Biomass Bioenergy 33:200–208

    Article  Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • Voelker SL, Muzika R-M, Guyette RP, Stambaugh MC (2006) Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecol Monogr 76:549–564

    Article  Google Scholar 

  • Von Felten S, Hättenschwiler S, Saurer M, Siegwolf R (2007) Carbon allocation in shoots of alpine treeline conifers in a CO2 enriched environment. Trees Struct Funct 21:283–294

    Article  CAS  Google Scholar 

  • Wang X, Taub DR (2010) Interactive effects of elevated carbon dioxide and environmental stresses on root mass fraction in plants: a meta-analytical synthesis using pairwise techniques. Oecologia 163:1–11

    Article  PubMed  Google Scholar 

  • Wardlaw IF (1990) Tansley review no 27—the control of carbon partitioning in plants. New Phytol 116:341–381

    Article  CAS  Google Scholar 

  • Wittwer SH (1983) Rising atmospheric CO2 and crop productivity. HortScience 18:667–673

    Google Scholar 

  • Würth MKR, Winter K, Korner C (1998) Leaf carbohydrate responses to CO2 enrichment at the top of a tropical forest. Oecologia 116:18–25

    Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank an anonymous reviewer for helpful comments on the text. S.L. received funding from the FP7 project ‘ACQWA’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Leuzinger.

Additional information

Communicated by Russell Monson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuzinger, S., Hättenschwiler, S. Beyond global change: lessons from 25 years of CO2 research. Oecologia 171, 639–651 (2013). https://doi.org/10.1007/s00442-012-2584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2584-5

Keywords

Navigation