Skip to main content

Advertisement

Log in

Forest cover reduces thermally suitable habitats and affects responses to a warmer climate predicted in a high-elevation lizard

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Warmer climates have affected animal distribution ranges, but how they may interact with vegetation patterns to affect habitat use, an important consideration for future wildlife management, has received little attention. Here, we use a biophysical model to investigate the potential thermal impact of vegetation pattern on the habitat quality of a high-elevation grassland lizard, Takydromus hsuehshanensis, and to predict the thermal suitability of vegetation for this species in a future warmer climate (assuming 3 °C air temperature increase). We assess the thermal quality of vegetation types in our study area (Taroko National Park in areas >1,800 m) using three ecologically relevant estimates of reptiles: body temperature (T b), maximum active time, and maximum digestive time. The results show that increasing forest canopy gradually cools the microclimates, hence decreasing these estimates. In the current landscape, sunny mountain-top grasslands are predicted to serve as high quality thermal habitat, whereas the dense forests that are dominant as a result of forest protection are too cold to provide suitable habitat. In simulated warmer climates, the thermal quality of dense forests increases slightly but remains inferior to that of grasslands. We note that the impact of warmer climates on this reptile will be greatly affected by future vegetation patterns, and we suggest that the current trend of upslope forest movement found in many other mountain systems could cause disadvantages to some heliothermic lizard species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adolph SC (1990) Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology 71:315–327

    Article  Google Scholar 

  • Bartelt P, Klaver RW, Porter WP (2010) Modeling amphibian energetics, habitat suitability, and movements of western toads (Anaxyrus boreas) across present and future landscapes. Ecol Model 221:2675–2686. doi:10.1016/j.ecolmodel.2010.07.009

    Article  Google Scholar 

  • Bauwens D, Castilla AM, Van Damme R, Verheyen RF (1990) Field body temperatures and thermoregulatory behavior of the high altitude lizard, Lacertabedriagae. J Herpetol 24:88–91

    Article  Google Scholar 

  • Caughley G, Gunn A (1996) Conservation biology in theory and practice. Blackwell, Cambridge, Mass.

    Google Scholar 

  • Chamaillé-Jammes S, Massot M, Aragón P, Clobert J (2006) Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob Change Biol 12:392–402. doi:10.1111/j.1365-2486.2005.01088.x

    Article  Google Scholar 

  • Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology. Bioscience 49:288–297

    Article  Google Scholar 

  • Christian KA (1998) Thermoregulation by the short-horned lizard (Phrynosoma douglassi) at high elevation. J Therm Biol 23:395–399

    Article  Google Scholar 

  • Christian KA, Tracy CR (1981) The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 49:218–223

    Article  Google Scholar 

  • Davies ZG, Wilson RJ, Coles S, Thomas CD (2006) Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. J Anim Ecol 75:247–256

    Article  PubMed  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 106:6668–6672. doi:10.1073/pnas.0709472105

    Article  Google Scholar 

  • Gaston KJ (2003) Range edges. In: Gaston KJ (ed) The structure and dynamics of geographic ranges. Oxford University Press, Oxford, pp 20–65

    Google Scholar 

  • Green RE (1995) Diagnosing causes of bird population decline. Ibis 137:S47–S55

    Article  Google Scholar 

  • Hokit DG, Branch LC (2003) Habitat patch size affects the demographics of Florida scrub lizard (Sceloporus woodi). J Herpetol 37:257–265

    Article  Google Scholar 

  • Huang SP, Tu MC (2008) Heat tolerance and altitudinal distribution of a mountainous lizard, Takydromus hsuehshanensis, in Taiwan. J Therm Biol 33:48–56

    Article  CAS  Google Scholar 

  • Huang SP, Tu MC (2009) Locomotion and elevational distribution of a mountainous lizard, Takydromus hsuehshanensis, in Taiwan. Zool Stud 48:477–484

    Google Scholar 

  • Huang SP, Chiou CR, Lin TE, Tu MC, Lin CC, Porter WP (2013) Future advantages in energetics, activity time, and habitats predicted in a high-altitude pit viper with climate warming. Funct Ecol 27:446–458. doi:10.1111/1365-2435.12040

    Article  Google Scholar 

  • Huey RB, Bennett AF (1987) Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 41:1098–1115

    Article  Google Scholar 

  • Huey RB, Webster TP (1976) Thermal biology of anolis lizards in a complex fauna: the christatellus group on Puerto Rico. Ecology 57:985–994

    Article  Google Scholar 

  • Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Perez HJ, Garland T Jr (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc Lond B 276:1939–1948. doi:10.1098/rspb.2008.1957

    Article  Google Scholar 

  • Jäjji C, Baur B (1999) Overgrowing forest as a possible cause for the local extinction of Vipera aspis in the northern Swiss Jura mountains. Amphibia-Reptilia 20:25–34

    Article  Google Scholar 

  • Jayne BC, Bennett AF (1990) Selection on locomotor performance capacity in a natural population of garter snakes. Evolution 44:1204–1229

    Article  Google Scholar 

  • Kearney MR, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131

    Article  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species ranges. Ecol Lett 12:334–350. doi:10.1111/j.1461-0248.2008.01277.x

    Article  PubMed  Google Scholar 

  • Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer ‘cold blooded’ animals against climate warming. Proc Natl Acad Sci USA 106:3835–3840. doi:10.1073/pnas.0808913106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kearney MR, Matzelle A, Helmuth B (2012) Biomechanics meets the ecological niche: the importance of temporal data resolution. J Exp Biol 215:922–933. doi:10.1242/jeb.059634

    Article  PubMed  Google Scholar 

  • Leal M, Gunderson AR (2012) Rapid change in thermal tolerance in a topic lizard. Am Nat 180:815–822. doi:10.1086/668077

    Article  PubMed  Google Scholar 

  • Lorenzon P, Clobert J, Oppliger A, John-Alder H (1999) Effect of water constraint on growth rate, activity and body temperature of yearling common lizard (Lacerta vivipara). Oecologia 118:423–430

    Article  Google Scholar 

  • Lue KY, Tu MC, Hsiang KS (1999) A field guide to amphibians and reptiles of Taiwan. Society of Wildlife and Nature, Taipei

    Google Scholar 

  • Martin TL, Huey RB (2008) Why suboptimal is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat 171:E102–E118. doi:10.1086/527502

    Article  PubMed  Google Scholar 

  • McCaffery RM, Maxell BA (2010) Decreased winter severity increases viability of a montane frog population. Proc Natl Acad Sci USA 107:8644–8649. doi:10.1073/pnas.0912945107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCullough EC, Porter WP (1971) Computing clear day solar radiation spectra for the terrestrial ecological environment. Ecology 52:1008–1015

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z et al (eds) Climate change 2007: The physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 749–845

    Google Scholar 

  • Mitchell NJ, Kearney MR, Nelson NJ, Porter WP (2008) Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara? Proc R Soc Lond B 275:2185–2193. doi:10.1098/rspb.2008.0438

    Article  Google Scholar 

  • Pearson OP, Bradford DF (1976) Thermoregulation of lizards and toads at high altitudes in Peru. Copeia 1976:155–170

    Article  Google Scholar 

  • Pike DA, Webb JK, Shine R (2011) Removing forest canopy cover restores a reptile assemblage. Ecol Appl 21:274–280

    Article  PubMed  Google Scholar 

  • Porter WP, Gates DM (1969) Thermodynamic equilibria of animals with environment. Ecol Monogr 39:227–244

    Article  Google Scholar 

  • Porter WP, Mitchell JW (2006) Method and system for calculating the spatial-temporal effects of climate and other environmental conditions on animals. US Patent 7,155,377, Dec 2006. http://www.warf.org/technologies.jsp?ipnumber=P01251US

  • Porter WP, Mitchell JW, Beckman WA, DeWitt CB (1973) Behavioral implications of mechanistic ecology–thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia 13:1–54

    Article  Google Scholar 

  • Pringle RM, Webb JK, Shine R (2003) Canopy structure, microclimate, and habitat selection by a nocturnal snake, Hoplocephalus bungaroides. Ecology 84:2668–2679

    Article  Google Scholar 

  • Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato JB, Raselimanana AP, Wu S, Nussbaum RA, Stone DA (2008) Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Glob Change Biol 14:1703–1720. doi:10.1111/j.1365-2486.2008.01596.x

    Article  Google Scholar 

  • Row JR, Blouin-Demers G (2006) Thermal quality influences effectiveness of thermoregulation, habitat use, and behaviour in milk snakes. Oecologia 148:1–11. doi:10.1007/s00442-005-0350-7

    Article  PubMed  Google Scholar 

  • Rull V, Vegas-Vilarrúbia T (2006) Unexpected biodiversity loss under global warming in the neotropical Guayana highlands: a preliminary appraisal. Glob Chang Biol 12:1–9. doi:10.1111/j.1365-2486.2005.001080.x

    Article  Google Scholar 

  • Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–610. doi:10.1038/19293

    Article  CAS  Google Scholar 

  • Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581. doi:10.1038/35079066

    Article  CAS  PubMed  Google Scholar 

  • Walther GR (2003) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6:169–185

    Article  Google Scholar 

  • Webb JK, Shine R, Pringle RM, Lannoo MJ (2005) Canopy removal restores habitat quality for an endangered snake in a fire suppressed landscape. Copeia 2005:894–900

    Article  Google Scholar 

  • Wilson BS, Wilson BS, Havel PJ (1989) Dehydration reduces the endurance running capacity of the lizard Uta stansburiana. Copeia 1989:1052–1056

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Endemic Species Research Institute for temperature data, Drs. Ping-Chun Lucy Hou and Kuang-Yang Lue for equipment, Hsu-Hong Lin, Ken-Hao Hsu, Yi-Huei Chen, Chun-Jui Chang, Ya- Chi Chiu, and Yi-Chun Cheng for field study, and Ruth Kearley, Stefanie Lohmann, and Porter laboratory members for constructive comments. We thank two anonymous reviewers for their instructive comments, which greatly improved this research. Shu-Ping Huang was supported by a Postdoctoral Fellowship from National Science Council, Taiwan (NSC98-2917-I-564-168). National Vegetation Inventory and Mapping Program 2003–2008 was funded by Taiwan Forest Bureau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ping Huang.

Additional information

Communicated by Lin Schwarzkopf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 483 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, SP., Porter, W.P., Tu, MC. et al. Forest cover reduces thermally suitable habitats and affects responses to a warmer climate predicted in a high-elevation lizard. Oecologia 175, 25–35 (2014). https://doi.org/10.1007/s00442-014-2882-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2882-1

Keywords

Navigation