Skip to main content
Log in

Niche-habitat mechanisms and biotic interactions explain the coexistence and abundance of congeneric sandgrouse species

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Ascertaining which niche processes allow coexistence between closely related species is of special interest in ecology. We quantified variations in the environmental niches and densities of two congeneric species, the pin-tailed and the black-bellied sandgrouse (Pterocles alchata and Pterocles orientalis) in allopatry and sympatry under similar abiotic, habitat and dispersal contexts to understand their coexistence. Using principal component analysis, we defined environmental gradients (niche dimensions) including abiotic, habitat and anthropogenic variables, and calculated niche breadth, position and overlap of both species in sympatry and allopatry. Additionally, sandgrouse density was modelled as a function of the niche dimensions and the density of the other species. We found evidence that each species occupies distinct environmental niches in sympatry and in allopatry. The black-bellied sandgrouse exploits a broader range of environmental conditions (wider niche breadth) while the pin-tailed sandgrouse reaches high densities where conditions seem to match its optimum. In sympatry, both species shift their niches to intermediate positions, indicating the importance of abiotic factors in setting coexistence areas. Environmental conditions determine regional densities of pin-tailed sandgrouse whereas biotic interactions explain the density of the black-bellied sandgrouse in areas with abiotic conditions similarly conducive for both species. Highly suitable areas for the pin-tailed sandgrouse fall beyond the upper thermal limit of the black-bellied sandgrouse, leading to niche segregation and low densities for the latter. Finally, local niche shift and expansion plus possible heterospecific aggregation allow the pin-tailed sandgrouse to thrive in a priori less favourable environments. This work provides insight into how different mechanisms allow species coexistence and how species densities vary in sympatry compared to allopatry as a result of environmental filtering and biotic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnagaud J-Y, Devictor V, Jiguet F, Barbet-Massin M, Le Viol I, Archaux F (2012) Relating habitat and climatic niches in birds. PLoS One 7:e32819. doi:10.1371/journal.pone.0032819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benítez-López A, Martín CA, Casas F, Mougeot F, García JT, Viñuela J (2010) Áreas de campeo y movimientos estacionales de la ganga ibérica Pterocles alchata. In: Casinello J, Castro F (eds) XIII Congreso Nacional y X Iberoamericano de Etología. Ponencias y comunicaciones, Ciudad Real, p 130

  • Benítez-López A, Viñuela J, Hervás I, Suárez F, García JT (2013) Modelling sandgrouse (Pterocles spp.) distributions and large-scale habitat requirements in Spain: implications for conservation. Environ Conserv 41:1–14. doi:10.1017/S0376892913000192

    Google Scholar 

  • Brändle M, Brandl R (2008) Distribution, abundance and niche breadth of birds: scale matters. Glob Ecol Biogeogr 10:173–177

    Article  Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling. Oxford University Press, Oxford

    Google Scholar 

  • Carrascal LM, Seoane J, Polo V (2010) A shortcut to obtain reliable estimations of detectability in extensive multispecific census programs. Theoretical and empirical demonstrations. In: Bermejo A (ed) Bird Numbers 2010. Monitoring, indicators and targets. Book of abstracts of the 18th Conference of the European Bird Census Council (EBCC). SEO/BirdLife, Madrid, pp 98–99

  • Casas F et al (2012) Movimientos estacionales de la ganga ibérica (Pterocles alchata) en la Reserva de la Biosfera de las Bardenas Reales (Navarra). In: Redondo T (ed) XIV Congreso Nacional y XI Iberoamericano de Etología. Libro de resúmenes. Digital CSIC, Sevilla

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Chunco AJ, Jobe T, Pfennig KS (2012) Why do species co-occur? A test of alternative hypotheses describing abiotic differences in sympatry versus allopatry using spadefoot toads. PLoS One 7:e32748. doi:10.1371/journal.pone.0032748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Murray, London

    Google Scholar 

  • Devictor V et al (2010) Defining and measuring ecological specialization. J Appl Ecol 47:15–25. doi:10.1111/j.1365-2664.2009.01744.x

    Article  Google Scholar 

  • Eriksson O (2013) Species pools in cultural landscapes—niche construction, ecological opportunity and niche shifts. Ecography 36:403–413. doi:10.1111/j.1600-0587.2012.07913.x

    Article  Google Scholar 

  • García J, Arroyo B (2005) Food-niche differentiation in sympatric hen Circus cyaneus and Montagu’s harriers Circus pygargus. Ibis 147:144–154

    Article  Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Google Scholar 

  • Gaston K, Blackburn T (2000) Pattern and process in macroecology. Blackwell, Oxford

    Book  Google Scholar 

  • Gaston KJ, Lawton JH (1990) Effects of scale and habitat on the relationship between regional distribution and local abundance. Oikos 58:329–335

    Article  Google Scholar 

  • Gaston KJ, Blackburn TM, Lawton JH (1997) Interspecific abundance-range size relationships: an appraisal of mechanisms. J Anim Ecol 66:579–601. doi:10.2307/5951

    Article  Google Scholar 

  • Geange SW, Pledger S, Burns KC, Shima JS (2011) A unified analysis of niche overlap incorporating data of different types. Methods Ecol Evol 2:175–184. doi:10.1111/j.2041-210X.2010.00070.x

    Article  Google Scholar 

  • Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621

    Article  Google Scholar 

  • Gregory RD, Gaston KJ (2000) Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos 88:515–526. doi:10.1034/j.1600-0706.2000.880307.x

    Article  Google Scholar 

  • Hanski I, Kouki J, Halkka A (1993) Three explanations of the relationship between density and distribution of species. In: Ricklefs R, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. Chicago University Press, Chicago, pp 108–116

    Google Scholar 

  • Heino J (2005) Positive relationship between regional distribution and local abundance in stream insects: a consequence of niche breadth or niche position? Ecography 28:345–354. doi:10.1111/j.0906-7590.2005.04151.x

    Article  Google Scholar 

  • Herranz J, Suárez F (1999) La ganga ibérica (Pterocles alchata) y la ganga ortega (Pterocles orientalis) en España. Distribución, abundancia, biología y conservación. Colección técnica. Ministerio de Medio Ambiente, Organismo Autónomo Parques Nacionales, Madrid

  • Hinsley SA, Ferns PN, Thomas DH, Pinshow B (1993) Black-bellied sandgrouse (Pterocles orientalis) and pin-tailed sandgrouse (Pterocles alchata): closely related species with differing bioenergetic adaptations to arid zones. Physiol Zool 66:20–42

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, Princeton

    Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Princeton University Press, Princeton

    Google Scholar 

  • MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • Manly BFJ (2007) Randomization, bootstrap and Monte Carlo methods in biology, 3rd edn. Chapman Hall, London

    Google Scholar 

  • Martín CA, Casas F, Mougeot F, García JT, Viñuela J (2010) Positive interactions between vulnerable species in agrarian pseudo-steppes: habitat use by pin-tailed sandgrouse depends on its association with the little bustard. Anim Conserv 13:383–389. doi:10.1111/j.1469-1795.2010.00349.x

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall/CRC, London

    Book  Google Scholar 

  • McGarigal K, Cushman S, Stafford S (2000) Multivariate statistics for wildlife and ecology research. Springer, New York

    Book  Google Scholar 

  • McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32:12–16

    Google Scholar 

  • Mouillot D et al (2005) Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145:345–353. doi:10.1007/s00442-005-0151-z

    Article  PubMed  Google Scholar 

  • Ninyerola M, Pons X, Roure J (2005) Atlas Climático Digital de la Península Ibérica. Metodología y Aplicaciones en Bioclimatología y Geobotánica. Universidad Autónoma de Barcelona, Bellaterra, Spain

  • Osborne PE, Suárez-Seoane S, Carlos Alonso J (2007) Behavioural mechanisms that undermine species envelope models: the causes of patchiness in the distribution of great bustards Otis tarda in Spain. Ecography 30:819–829. doi:10.1111/j.2007.0906-7590.05233.x

    Article  Google Scholar 

  • R Development-Core-Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org

  • Rannap R, Lõhmus A, Briggs L (2009) Niche position, but not niche breadth, differs in two coexisting amphibians having contrasting trends in Europe. Divers Distrib 15:692–700

    Article  Google Scholar 

  • Rivas-Martínez S (2004) Bioclimatic map of Europe: bioclimates, scale 1:16 mill. Cartographic Service, University of León, León

    Google Scholar 

  • Sanza MA, Traba J, Morales MB, Rivera D, Delgado MP (2012) Effects of landscape, conspecifics and heterospecifics on habitat selection by breeding farmland birds: the case of the Calandra lark (Melanocorypha calandra) and corn bunting (Emberiza calandra). J Ornithol 153:1–9. doi:10.1007/s10336-011-0773-3

    Article  Google Scholar 

  • Silverman B (1986) Density estimation for statistics and data analysis. Chapman Hall, London

    Book  Google Scholar 

  • Slatyer RA, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16:1104–1114. doi:10.1111/ele.12140

    Article  PubMed  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123. doi:10.1111/j.1461-0248.2007.01107.x

    Article  PubMed  Google Scholar 

  • Sridhar H, Beauchamp G, Shanker K (2009) Why do birds participate in mixed-species foraging flocks? A large-scale synthesis. Anim Behav 78:337–347

    Article  Google Scholar 

  • Suárez F, Hervás I, Herranz J, Del Moral JC (2006) La ganga ibérica y la ganga ortega en España: población en 2005 y método de censo. SEO/BirdLife, Madrid

    Google Scholar 

  • Swenson N (2006) Gis-based niche models reveal unifying climatic mechanisms that maintain the location of avian hybrid zones in a North American suture zone. J Evol Biol 19:717–725. doi:10.1111/j.1420-9101.2005.01066.x

    Article  CAS  PubMed  Google Scholar 

  • Thomas L et al (2006) Distance sampling. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics. Wiley, Chichester

  • Walls SC (2009) The role of climate in the dynamics of a hybrid zone in Appalachian salamanders. Glob Change Biol 15:1903–1910. doi:10.1111/j.1365-2486.2009.01867.x

    Article  Google Scholar 

  • Wisz MS et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30. doi:10.1111/j.1469-185X.2012.00235.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Dirección General de Investigación (project CGL2008-04282/BOS) and the HNV project (Spanish Ministry of Rural and Marine Environment). SEO/Birdlife provided data from the sandgrouse national census. A. Benítez-López was supported by the 2012-BIN-4462 research grant awarded by the Universidad de Castilla-La Mancha. We thank Fidel Sánchez for his help at some stages during the process of data compilation and analyses in ArcGIS 9.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Benítez-López.

Additional information

Communicated by Ola Olsson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 737 kb)

Supplementary material 2 (PDF 628 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benítez-López, A., Viñuela, J., Suárez, F. et al. Niche-habitat mechanisms and biotic interactions explain the coexistence and abundance of congeneric sandgrouse species. Oecologia 176, 193–206 (2014). https://doi.org/10.1007/s00442-014-3010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3010-y

Keywords

Navigation