Skip to main content
Log in

Fragmentation in kimberlite: products and intensity of explosive eruption

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The explosive eruption of kimberlite magma is capable of producing a variety of pyroclast sizes, shapes, and textures. However, all pyroclastic deposits of kimberlite comprise two main types of pyroclasts: (1) pyroclasts of kimberlite with or without enclosed olivine crystals and (2) olivine crystals which lack coatings of kimberlite. Here, we propose two hypotheses for how kimberlite magmas are modified due to explosive eruption: (1) olivine crystals break during kimberlite eruption, and (2) kimberlite melt can be efficiently separated from crystals during eruption. These ideas are tested against data collected from field study and image analysis of coherent kimberlite and fragmental kimberlite from kimberlite pipes at Diavik, NT. Olivines are expected to break because of rapid pressure changes during the explosive eruption. Disruption of kimberlite magma, and pyroclast production, is driven by ductile deformation processes, rather than by brittle fragmentation. The extent to which melt separates from olivine crystals to produce kimberlite-free crystals is a direct consequence of the relative proportions of gas, melt and crystals. Lastly, the properties of juvenile pyroclasts in deposits of pyroclastic kimberlite are used to index the relative intensity of kimberlite eruptions. A fragmentation index is proposed for kimberlite eruption based on: (a) crystal size distributions of olivine and on (b) ratios of selvage-free olivine pyroclasts to pyroclasts of kimberlite with or without olivine crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. There are many two-parameter model equations which appear similar over small ranges of observation (e.g. gamma, power, log-normal) (Bonnet et al. 2001; Clauset et al. 2007). Here, power–law equations of the form N v (X ≥ x) = λx −D are used to approximate, rather than describe, olivine crystal populations after Moss et al. (2010).

  2. Kelvin–Helmholz shear instabilities form asymmetric waves at the boundary between gas and liquid of wavelength; \( query \lambda = \delta \sqrt {{\rho \,/\,{\rho_g}}} \), where λ is the wavelength, δ is the boundary layer thickness, ρ is the density of the liquid, and ρ g is gas density.

  3. Rayleigh–Taylor instabilities form as a transverse destabilization of existing waveforms, due to accelerations imposed on the liquid–gas interface by the passage of primary undulations. Such transverse waveforms have a wavelength: \( {\lambda_{ \bot }}/\delta \cong 3W{e_{\delta }}^{{ - 1/3}}{(\rho /{\rho_g})^{{1/3}}} \), with \( W{e_{\delta }} = {\rho_g}{(\Delta v)^2}\delta /\gamma \), where ∆v is the relative gas velocity.

References

  • Arndt NT, Boullier AM, Clement JP, Dubois M, Schissel D (2006) What olivine, the neglected mineral, tells us about kimberlite petrogenesis. eEarth 1:15–21

    Article  Google Scholar 

  • Bangham DH, Razouk RI (1937) Adsorption and wettability of solid surfaces. Trans Faraday Soc 33:1459–1463

    Article  Google Scholar 

  • Basson IJ, Viola G (2004) Passive kimberlite intrusion into actively dilating dyke-fracture arrays: evidence from fibrous calcite veins and extensional fracture cleavage. Lithos 76(1–4):283–297

    Article  Google Scholar 

  • Best MG, Christiansen EH (1997) Origin of broken phenocrysts in ash-flow tuffs. Geol Soc Am Bull 109(1):63–73

    Article  Google Scholar 

  • Bindeman IN (2005) Fragmentation phenomena in populations of magmatic crystals. Am Mineral 90:1801–1815

    Article  Google Scholar 

  • Blake S, Wilson CJN, Smith IEM, Walker GPL (1992) Petrology and dynamics of the Waimihia mixed magma eruption, Taupo Volcano, New Zealand. J Geol Soc 149(2):193–207. doi:10.1144/gsjgs.149.2.0193

    Article  Google Scholar 

  • Blander M, Katz JL (1975) Bubble nucleation in liquids. AICHE J 21(5):833–848

    Article  Google Scholar 

  • Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geological media. Rev Geophys 39(3):347–383

    Article  Google Scholar 

  • Boyer L, Hood CT, McCandless TE, Skelton D, Tosdal RM (2004) Volcanology of the Buffalo Hills Kimberlites, Alberta, Canada: some preliminary observations. 8th International Kimberlite Conference Long Abstract

  • Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos 112(Supplement 1):201–212

    Article  Google Scholar 

  • Brown RJ, Gernon T, Stiefenhofer J, Field M (2008) Geological constraints on the eruption of the Jwaneng Centre kimberlite pipe, Botswana. J Volcanol Geotherm Res 174(1–3):195–208

    Article  Google Scholar 

  • Bursik M (1998) Tephra dispersal. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions, vol 145. Geol Soc Spec Pub, pp 115–144

  • Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient. Chapman & Hall, London

    Book  Google Scholar 

  • Cas R, Porrit L, Hayman P, Pittari A (2008) Pyroclast formation processes during explosive kimberlite eruptions. 9th International Kimberlite Conference, extended abstract no. 9IKC-A-00030

  • Clauset A, Shalizi CR, Newman MEJ (2007) Power-law distributions in empirical data. arXiv 0706_1062v1:1–26

    Google Scholar 

  • Clement CR (1982) A comparative geological study of some major kimberlite pipes in the Northern Cape and Orange Free State. University of Cape Town, Cape Town, South Africa

  • Downes PJ, Ferguson D, Griffin BJ (2007) Volcanology of the Aries micaceous kimberlite, central Kimberley Basin, Western Australia. J Volcanol Geotherm Res 159(1–3):85–107

    Article  Google Scholar 

  • Dunbar NW, McIntosh WC, Esser RP (2008) Physical setting and tephrachronology of the summit caldera ice record at Mount Moulton, West Antarctica. Geol Soc Am Bull 120(7–8):796–812

    Article  Google Scholar 

  • Faeth G, Hsiang L-P, Wu P-K (1995) Structure and breakup properties of sprays. Int J Multiphase Flow 21:99–127

    Article  Google Scholar 

  • Field M, Scott-Smith BH (1999) Contrasting geology and near-surface emplacement of kimberlite pipes in southern Africa and Canada. In: VIIth International Kimberlite Conference, Cape Town, South Africa. Red Roof Designs, pp 214–237

  • Fisher RV (1963) Bubble-wall texture and its significance. J Sediment Res 33:224–227

    Google Scholar 

  • Fitzgerald CE, Hetman CM, Lepine I, Skelton DS, McCandless TE (2009) The internal geology and emplacement history of the Renard 2 kimberlite, Superior Province, Quebec, Canada. Lithos 112(Supplement 1):513–528

    Article  Google Scholar 

  • Freundt A, Bursik MI (1998) Pyroclastic density currents. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions, vol 145. Geol Soc London Special Pub, pp 145–182

  • Galloway M, Nowicki T, van Coller B, Mukodzani B, Siemens K, Hetman C, Webb K, Gurney J (2009) Constraining kimberlite geology through integration of geophysical, geological and geochemical methods: a case study of the Mothae kimberlite, northern Lesotho. Lithos 112(Supplement 1):130–141

    Article  Google Scholar 

  • Gernon TM, Gilbertson MA, Sparks RSJ, Field M (2008) Gas-fluidisation in an experimental tapered bed: insights into processes in diverging volcanic conduits. J Volcanol Geotherm Res 174(1–3):49–56

    Article  Google Scholar 

  • Gernon TM, Fontana G, Field M, Sparks RSJ, Brown RJ, Mac Niocaill C (2009) Pyroclastic flow deposits from a kimberlite eruption: The Orapa South Crater, Botswana. Lithos 112(1):556–578

    Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1–4):123–134

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2007) The fluid mechanics inside a volcano. Ann Rev Fluid Mech 39(1):321–356. doi:10.1146/annurev.fluid.39.050905.110207

    Article  Google Scholar 

  • Graham I, Burgess JL, Bryan D, Ravenscroft PJ, Thomas E, Doyle BJ, Hopkins R, Armstrong KA (1999) Exploration history and geology of the Diavik kimberlites, Lac de Gras, Northwest Territories, Canada. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the VIIth International Kimberlite Conference, Cape Town, South Africa. Red Roof Design, pp 262–279

  • Hammer JE, Coombs ML, Shamberger PJ, Kimura J-I (2006) Submarine sliver in North Kona: a window into the early magmatic and growth history of Hualalai Volcano, Hawaii. J Volcanol Geotherm Res 151(1–3):157–188

    Article  Google Scholar 

  • Harder M, Scott Smith BH, Hetman CM, Pell J (2009) The evolution of geological models for the DO-27 kimberlite, NWT, Canada: implications for evaluation. Lithos 112(Supplement 1):61–72

    Article  Google Scholar 

  • Harvey S, Kjarsgaard B, McClintock M, Shimell M, Fourie L, Du Plessis P, Read G (2009) Geology and evaluation strategy of the Star and Orion South kimberlites, Fort a la Corne, Canada. Lithos 112(1):47–60

    Google Scholar 

  • Head JW, Wilson L (2008) Integrated model for kimberlite ascent and eruption. 9th International Kimberlite Conference Extended Abstracts: 1–3

  • Heiken G (1972) Morphology and petrography of volcanic ashes. Geol Soc Am Bull 83(7):1961–1988. doi:10.1130/0016-7606(1972)83[1961:mapova]2.0.co;2

    Article  Google Scholar 

  • Herd RA, Pinkerton H (1997) Bubble coalescence in basaltic lava: its impact on the evolution of bubble populations. J Volcanol Geotherm Res 75(1–2):137–157

    Article  Google Scholar 

  • Hetman CM, Scott Smith BH, Paul JL, Winter F (2004) Geology of the Gahcho Kue kimberlite pipes, NWT, Canada: root to diatreme magmatic transition zones. Lithos 76(1–4):51–74

    Article  Google Scholar 

  • Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116

    Google Scholar 

  • Hinze JO (1959) Turbulence, an introduction to its mechanisms and theory. McGraw-Hill, New York

    Google Scholar 

  • Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22:125–145

    Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin D (2007) Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 00:1–17

    Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49(4):823–839

    Google Scholar 

  • Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res 103:29759–29779

    Article  Google Scholar 

  • Kjarsgaard B, Harvey S, McClintock M, Zonneveld JP, Du Plessis P, McNeil D, Heaman L (2009) Geology of the Orion South kimberlite, Fort a la Corne, Canada. Lithos 112(1):600–617

  • Kueppers U, Perugini D, Dingwell DB (2006) “Explosive energy” during volcanic eruptions from fractal analysis of pyroclasts. Earth Planet Sci Lett 248(3–4):800–807

    Article  Google Scholar 

  • Kurszlaukis S, Barnett WP (2003) Volcanological and structural aspects of the Venetia kimberlite cluster — a case study of South African kimberlite maar–diatreme volcanoes. S Afr J Geol 106:165–192

    Article  Google Scholar 

  • Kurszlaukis S, Mahotkin I, Rotman AY, Kolesnikov GV, Makovchuk IV (2006) Syn- and post-eruptive volcanic processes in the Yubileinaya kimberlite pipe, Yakutia. Kimberlite Emplacement Workshop, long abstract: 1–5

  • Leckie DA, Kjarsgaard BA, Bloch J, McIntyre D, McNeil D, Stasiuk L, Heaman L (1997) Emplacement and reworking of Cretaceous, diamond-bearing, crater-facies kimberlite of central Saskatchewan, Canada. Geol Soc Am Bull 109(8):1000–1020

    Article  Google Scholar 

  • Mahotkin I, Robey J, Kurszlaukis S, Valuev E, Pylaev N (2003) Pipe emplacement model of the Lomonosov diamond deposit, Archangelsk region, NW Russia. Eighth International Kimberlite Conference Long Abstract

  • Mainkar D, Lehmann B, Haggerty SE (2004) The crater-facies kimberlite system of Tokapal, Bastar District, Chhattisgarh, India. Lithos 76(1–4):201–217

    Article  Google Scholar 

  • Masun KM, Scott Smith BH (2008) The Pimenta Bueno kimberlite field, Rondônia, Brazil: tuffisitic kimberlite and transitional textures. J Volcanol Geotherm Res 174(1–3):81–89

    Article  Google Scholar 

  • Michol KA, Russell JK, Andrews GDM (2008) Welded block and ash flow deposits from Mount Meager, British Columbia, Canada. J Volcanol Geotherm Res 169(3–4):121–144

    Article  Google Scholar 

  • Mitchell RH (2009) Mineralogy of juvenile lapilli in Fort a la Corne pyroclastic kimberlites. Paper presented at the 2009 Joint Assembly AGU-GAC, Toronto, ON

  • Morgan DJ, Jerram DA (2006) On estimating crystal shape for crystal size distribution analysis. J Volcanol Geotherm Res 154(1–2):1–7

    Article  Google Scholar 

  • Moss S, Russell JK, Andrews GDM (2008) Progressive infilling of a kimberlite pipe at Diavik, Northwest Territories, Canada: insights from volcanic facies architecture, textures, and granulometry. J Volcanol Geotherm Res 174(1–3):103–116

    Article  Google Scholar 

  • Moss S, Russell JK, Brett RC, Andrews GDM (2009) Spatial and temporal evolution of kimberlite magma at A154N, Diavik, Northwest Territories, Canada. Lithos 112(Supplement 1):541–552

    Article  Google Scholar 

  • Moss S, Russell JK, Smith BHS, Brett RC (2010) Olivine crystal size distributions in kimberlite. Am Mineral 95(4):527–536. doi:10.2138/am.2010.3277

    Article  Google Scholar 

  • Naidoo P, Stiefenhofer J, Field M, Dobbe R (2004) Recent advances in the geology of Koffiefontein Mine, Free State Province, South Africa. Lithos 76(1–4):161–182

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The Volcano Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238

    Article  Google Scholar 

  • Nowicki T, Crawford B, Dyck D, Carlson J, McElroy R, Oshust P, Helmstaedt H (2004) The geology of kimberlite pipes of the Ekati property, Northwest Territories, Canada. Lithos 76(1-4):1–27

    Google Scholar 

  • Nowicki T, Porritt L, Crawford B, Kjarsgaard B (2008) Geochemical trends in kimberlites of the Ekati property, Northwest Territories, Canada: insights on volcanic and resedimentation processes. J Volcanol Geotherm Res 174(1–3):117–127

    Article  Google Scholar 

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134(1–2):77–107

    Article  Google Scholar 

  • Parfitt EA, Wilson L, Neal CA (1995) Factors influencing the height of Hawaiian lava fountains: implications for the use of fountain height as an indicator of gas content. Bull Volcanol 57:440–450

    Article  Google Scholar 

  • Pittari A, Cas RAF, Lefebvre N, Robey J, Kurszlaukis S, Webb K (2008) Eruption processes and facies architecture of the Orion Central kimberlite volcanic complex, Fort à la Corne, Saskatchewan; kimberlite mass flow deposits in a sedimentary basin. J Volcanol Geotherm Res 174(1–3):152–170

    Article  Google Scholar 

  • Porritt LA, Cas RAF (2009) Reconstruction of a kimberlite eruption, using an integrated volcanological, geochemical and numerical approach: a case study of the Fox Kimberlite, NWT, Canada. J Volcanol Geotherm Res 179(3–4):241–264

    Article  Google Scholar 

  • Porritt LA, Russell JK (2011) Kimberlite ash: Fact or fiction. Physics and Chemistry of the Earth, Parts A/B/C. doi:10.1016/j.pce.2011.03.002

  • Porritt LA, Cas RAF, Crawford BB (2008) In-vent column collapse as an alternative model for massive volcaniclastic kimberlite emplacement: an example from the Fox kimberlite, Ekati Diamond Mine, NWT, Canada. J Volcanol Geotherm Res 174(1–3):90–102

    Article  Google Scholar 

  • Price S, Russell JK, Kopylova M (2000) Primitive magma from the Jericho pipe, N.W.T., Canada: constraints on primary melt chemistry. J Petrol 41(6):789–808

    Article  Google Scholar 

  • Russell JK, Giordano D, Kopylova M, Moss S (2006) Transport properties of kimberlite melt. In: Long Abstract, Kimberlite Emplacement Workshop, Saskatoon, Canada

  • Schmincke HU (2004) Volcanism, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Schumacher R, Schmincke H-U (1991) Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano. Bull Volcanol 53(8):612–634

    Article  Google Scholar 

  • Scott Smith BH (1995) Geology of the Sturgeon Lake 02 kimberlite block, Saskatchewan. Exploration and Mining Geology CIM 4: 141–151

    Google Scholar 

  • Scott Smith BH (2008a) Canadian kimberlites: geological characteristics relevant to emplacement. J Volcanol Geotherm Res 174(1–3):9–19

    Article  Google Scholar 

  • Scott Smith BH (2008b) Introduction to kimberlites. Short course notes: kimberlites-geological principles relevant to evaluation, resource classification and mining. In: mineral exploration roundup 08, Vancouver, p 21

  • Scott Smith BH, Smith SCS (2009) The economic implications of kimberlite emplacement. Lithos 112(Supplement 1):10–22

    Article  Google Scholar 

  • Sigurdsson H (ed) (2000) Encyclopedia of volcanoes. Academic, San Diego

    Google Scholar 

  • Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geotherm Res 155(1–2):18–48

    Article  Google Scholar 

  • Stiefenhofer J, Farrow DJ (2004) Geology of the Mwadui kimberlite, Shinyanga district, Tanzania. Lithos 76(1–4):139–160

    Article  Google Scholar 

  • Trickett SK, Jones AP, Field M (2006) Mapping lithofacies within the D/K1 kimberlite pipe, Letlhakane, Botswana: a multi-disciplinary approach. Kimberlite Emplacement Workshop, long abstract: 1–5

  • van Straaten BI, Kopylova MG, Russell JK, Webb KJ, Scott Smith BH (2008) Discrimination of diamond resource and non-resource domains in the Victor North pyroclastic kimberlite, Canada. J Volcanol Geotherm Res 174(1–3):128–138

    Article  Google Scholar 

  • Vergniolle S, Jaupart C (1986) Separated two-phase flow and basaltic eruptions. J Geophys Res 91(B12):12842–12860

    Article  Google Scholar 

  • Villermaux E (1998) On the role of viscosity in shear instabilities. Phy Fluids 10:368–373

    Article  Google Scholar 

  • Villermaux E (2007) Fragmentation. Ann Rev Fluid Mech 39:419–446

    Article  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions–a new classification scheme. Geol Rudsch 62:431–446

    Article  Google Scholar 

  • Walker D, Mullins O (1981) Surface tension of natural silicate melts from 1,200°–1,500°C and implications for melt structure. Contrib Mineral Petrol 76(4):455–462

    Article  Google Scholar 

  • Walker GPL, Self S, Wilson L (1984) Tarawera 1886, New Zealand–a basaltic plinian fissure eruption. J Volcanol Geotherm Res 21(1–2):61–78

    Article  Google Scholar 

  • Walters PJC, Brown RJ, Field M, Gernon T, Stripp G, Sparks RSJ (2006) The role of fluidisation in the formation of volcaniclastic kimberlite: grain size observations and experimental investigation. J Volcanol Geotherm Res 155(1–2):119–137

    Article  Google Scholar 

  • Webb KJ (2006) Juvenile clasts in kimberlites: standardizing comprehensive description towards unravelling emplacement models. In: Kimberlite Emplacement Workshop, Saskatoon, Saskatchewan

  • Webb KJ, Scott Smith BH, Paul JL, Hetman CM (2004) Geology of the Victor Kimberlite, Attawapiskat, Northern Ontario, Canada: cross-cutting and nested craters. Lithos 76(1–4):29–50

    Article  Google Scholar 

  • Wierzba A (1990) Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers. Exp Fluids 9(1):59–64

    Article  Google Scholar 

  • Wilson L (1980) Relationships between pressure, volatile content and ejecta velocity in three types of volcanic explosion. J Volcanol Geotherm Res 8(2–4):297–313

    Article  Google Scholar 

  • Wilson L, Parfitt EA (2008) Fundamentals of physical volcanology. Blackwell, Oxford

    Google Scholar 

  • Wolff JA (1994) Physical properties of carbonatite magmas inferred from molten salt data, and application to extraction patterns from carbonatite-silicate magma chambers. Geol Mag 131:145–153

    Article  Google Scholar 

  • Wood BD, Scott Smith BH, de Gasparis S (1998) The ML kimberlitic pipes of northwest Alberta: exploration, geology and emplacement model. 7th International Kimberlite Conference Extended Abstracts, Cape Town, South Africa, 1998, J.J. Gurney, J.L. Gurney, M.D. Pascoe and S.H. Richardson (ed.); Red Roof Design cc, South Africa, pp. 960–962

  • Wu PK, Faeth GM (1995) Onset and end of drop formation along the surface of turbulent liquid jets in still gases. Phys Fluids 7(11):2915–2917

    Article  Google Scholar 

  • Zonneveld JP, Kjarsgaard BA, Harvey SE, Heaman LM, McNeil DH, Marcia KY (2004) Sedimentologic and stratigraphic constraints on emplacement of the Star Kimberlite, east-central Saskatchewan. Lithos 76(1–4):115–138

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by an NSERC Collaborative Research and Development Grant (22R42415) held by J.K. Russell and sponsored by RioTinto Diavik Diamond Mine, Inc. (DDMI), entitled Kimberlite Eruption Dynamics: Implications for Diamond Distribution in the Diavik Kimberlite. We gratefully acknowledge critical reviews by RSJ Sparks, Richie Brown, Alison Rust, and James White, as well as constructive conversations with Barbara Scott Smith, Lucy Porritt, and Bram van Straaten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Moss.

Additional information

Editorial responsibility: R.S.J. Sparks

This paper constitutes part of a special issue: Cas RAF, Russell JK, Sparks RSJ (eds) Advances in kimberlite volcanology and geology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moss, S., Russell, J.K. Fragmentation in kimberlite: products and intensity of explosive eruption. Bull Volcanol 73, 983–1003 (2011). https://doi.org/10.1007/s00445-011-0504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0504-x

Keywords

Navigation