Skip to main content
Log in

Scales of columnar jointing in igneous rocks: field measurements and controlling factors

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Columnar jointing is a common feature of solidified lavas, sills and dikes, but the factors controlling the characteristic stoutness of columns remain debated, and quantitative field observations are few in number. In this paper, we provide quantitative measurements on sizing of columnar joint sets and our assessment of the principal factors controlling it. We focus on (1) chemistry, as it is the major determinant of the physical (mechanical and thermal) properties of the lava, and (2) geology, as it influences the style of emplacement and lava geometry, setting boundary conditions for the cooling process and the rate of heat loss. In our analysis, we cover lavas with a broad range of chemical compositions (from basanite to phonolite, for six of which we provide new geochemical analyses) and of geological settings. Our field measurements cover 50 columnar jointing sites in three countries. We provide reliable, manually digitized data on the size of individual columns and focus the mathematical analysis on their geometry (23,889 data on side length, of which 17,312 are from full column sections and 3,033 data on cross-sectional area and order of polygonality). The geometrical observations show that the variation in characteristic size of columns between different sites exceeds one order of magnitude (side length ranging from 8 to 338 cm) and that the column-bounding polygons’ average order is less than 6. The network of fractures is found to be longer than required by a minimum-energy hexagonal configuration, indicating a non-equilibrium, geologically quick process. In terms of the development and characteristic sizing of columnar joint sets, our observations suggest that columns are the result of an interplay between the geological setting of emplacement and magma chemistry. When the geological setting constrains the geometry of the emplaced body, it exerts a stronger control on characteristic column stoutness. At unconstrained geometries (e.g. unconfined lava flows), chemistry plays the major role, resulting in stouter columns in felsic lavas and slenderer columns in mafic lavas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aydin A, DeGraff JM (1988) Evolution of polygonal fracture patterns in lava flows. Science 239:471–476

    Article  Google Scholar 

  • Bout P (1960) Le Villafranchien du Velay et du bassin hydrographique moyen et supérieur de l’Allier. Imprimerie Jeanne-d’Arc, Le Puy en Velay, 1–344 pp (in French)

    Google Scholar 

  • Brousse R (1961) Analyses chimiques des roches volcaniques tertiaires et quaternaires de la France. Bull Serv Carte Géol Fr 263(58):1–140 (in French)

    Google Scholar 

  • Brousse R, Tempier P, Rançon JP, Veyret-Mekdjian Y (1989) Notice explicative, carte géologique de la France (1/50000), feuille Bourg-Lastic. Bureau de Recherches Géologiques et Minières, Orléans, pp 1–78, in French

    Google Scholar 

  • Brousse R, Rançon JP, Le Garrec MJ, Veyret-Mekdjian Y, Medhizadeh H, Mervoyer B, Musengié M (1990) Notice explicative, carte géologique de la France (1/50000), feuille La Tour-d’Auvergne. Bureau de Recherches Géologiques et Minières, Orléans, pp 1–68 (in French)

    Google Scholar 

  • Budkewitsch P, Robin PY (1994) Modelling the evolution of columnar joints. J Volcanol Geotherm Res 59:219–239

    Article  Google Scholar 

  • Bulkeley RB (1693) Part of a letter concerning the Giants Causeway in the County of Atrim in Ireland. Trans Roy Soc London 17:708–710

    Article  Google Scholar 

  • Büttner R, Dellino P, Raue H, Sonder I, Zimanowski B (2006) Stress-induced brittle fragmentation of magmatic melts: theory and experiments. J Geophys Res 111:B08204. doi:10.1029/2005JB003958

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, Oxford, pp 1–510

    Google Scholar 

  • Castro JM, Beck P, Tuffen H, Nichols ARL, Dingwell DB, Martin MC (2008) Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. Am Mineral 93:1816–1822

    Article  Google Scholar 

  • Cheguer L (1990) Interprétation quantitative de la prismation des laves. Master thesis, Université Blaise Pascal, Clermont-Ferrand, 1–45 (in French)

  • DeGraff JM, Aydin A (1987) Surface morphology of columnar joints and its significance to mechanics and direction of joint growth. Geol Soc Am Bull 99:605–617

    Article  Google Scholar 

  • DeGraff JM, Long PE, Aydin A (1989) Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows. J Volcanol Geotherm Res 38:309–324

    Article  Google Scholar 

  • Demarest N (1774) Mémoire sur l’origine et la nature du basalte à grandes colonnes polygones, déterminées par l’histoire naturelle de cette pierre, observée en Auvergne. Histoire et mémoires de l’Académie Royale des Sciences, Année 1771, Paris, pp 705–775

    Google Scholar 

  • Demarest N (1777) Mémoire sur le basalte, troisème partie. Histoire et mémoires de l’Académie Royale des Sciences, Année 1773, Paris, pp 599–670

    Google Scholar 

  • Dingwell DB (1995) Relaxation in silicate melts: some applications. In: Stebbins JF, McMillan PF, Dingwell DB (eds) Structure, dynamics and propertied of silicate melts. Rev Mineral Geochem 32, pp 21–66

  • Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273:1054–1055

    Article  Google Scholar 

  • Dobosi G, Fodor RV, Goldberg SA (1995) Late-Cenozoic alkalic basalt magmatism in Northern Hungary and Slovakia: petrology, source compositions and relationship to tectonics. Acta Vulcanol 7(2):199–207

    Google Scholar 

  • Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram GA, Harmon RS, Scharbert HG (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34(2):317–343

    Google Scholar 

  • Gilbert CM (1938) Welded tuff in eastern California. Geol Soc Am Bull 49:1829–1862

    Google Scholar 

  • Gilman JJ (2009) Basalt columns, large scale constitutional supercooling? J Volcanol Geotherm Res 184:347–350

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Gméling K, Németh K, Martin U, Eby N, Varga Z (2007) Boron concentrations of volcanic fields in different geotectonic settings. J Volcanol Geotherm Res 159:70–84

    Article  Google Scholar 

  • Goehring L, Morris SW (2005) Order and disorder in columnar joints. Europhys Lett 69:739–745

    Article  Google Scholar 

  • Goehring L, Lin Z, Morris SW (2006) An experimental investigation of the scaling of columnar joints. Phys Rev E 74:036115

    Article  Google Scholar 

  • Goehring L, Mahadevan L, Morris SW (2009) Nonequilibrium scale selection mechanism for columnar jointing. Proc Nat Acad Sci 106(2):387–392

    Article  Google Scholar 

  • Goër de Hervé A (1972) La planèze de Saint-Flour. Ph.D. thesis, Université Blaise-Pascal, Clermont-Ferrand, 1–244 (in French)

  • Goto Y, McPhie J (1998) Endogenous growth of a Miocene submarine dacite cryptodome, Rebun Island, Hokkaido, Japan. J Volcanol Geotherm Res 84:273–286

    Article  Google Scholar 

  • Gray NH (1986) Symmetry in a natural fracture pattern: the origin of columnar joint networks. Comp & Maths with Appls 12B(3/4):531–545

    Google Scholar 

  • Grossenbacher KA, McDuffie SM (1995) Conductive cooling of lava: columnar joint diameter and stria width as functions of cooling rate and thermal gradient. J Volcanol Geotherm Res 69:95–103

    Article  Google Scholar 

  • Guillou H, Van Vliet-Lanoë B, Guðmundsson A, Nomade S (2010) New unspiked K–Ar ages of Quaternary sub-glacial and sub-aerial volcanic activity in Iceland. Quat Geochronol 5:10–19. doi:10.1016/j.quageo.2009.08.007

    Article  Google Scholar 

  • Guy B (2010) Comments on “Basalt columns: large scale constitutional supercooling?” by John Gilman (JVGR, 2009) and presentation of some new data. J Volcanol Geotherm Res 194:69–73

    Article  Google Scholar 

  • Guy B, Le Coze J (1990) Reflections on columnar jointing of basalts: the instability of the planar solidification front. Comptes rendus de l’Académie des sciences Paris 311(II):943–949

    Google Scholar 

  • Harangi SZ, Vaselli O, Tonarini S, Szabó CS, Harangi R, Coradossi N (1995) Petrogenesis of Neogene extension-related alkaline volcanic rocks of the Little Hungarian Plain Volcanic Field (Western Hungary). In: Downes H, Vaselli O (eds) Neogene and related magmatism in the Carpatho-Pannonian Region. Acta Vulcanol 7, pp 173–187

  • Hardarson BS, Fitton JG, Ellam RM, Pringle MS (1997) Rift relocation—a geochemical and geochronological investigation of a palaeo-rift in northwest Iceland. Earth Planet Sci Lett 153:181–196

    Article  Google Scholar 

  • Hédervári P (1981) Évezredek, vulkánok, emberek (Millennia, volcanoes, men). Univerzum, Budapest, p 310 (in Hungarian)

    Google Scholar 

  • Hemond C, Arndt N, Lichtenstein U, Hofmann A, Oskarsson N, Steinthorsson S (1993) The heterogeneous Iceland plume: Nd–Sr–O isotopes and trace element constraints. J Geophys Res 98:15833–15850. doi:10.1029/93JB01093

    Article  Google Scholar 

  • Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows—observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370

    Article  Google Scholar 

  • Hull D, Caddock BD (1999) Simulation of prismatic cracking of cooling basalt lava flows by the drying of sol-gels. J Materials Sci 34:5707–5720

    Article  Google Scholar 

  • Huppert EH, Shepherd JB, Sigurdsson H, Sparks RSJ (1982) On lava dome growth, with application to the 1979 lava extrusion of the Soufrière of St. Vincent. J Volcanol Geotherm Res 14:199–222

    Article  Google Scholar 

  • Jaeger JC (1961) The cooling of irregularly shaped igneous bodies. Am J Sci 259:721–731

    Article  Google Scholar 

  • Jakobsson SP (1972) Chemistry and distribution pattern of recent basaltic rocks in Iceland. Lithos 5:365–386. doi:10.16/0024-4937(72)90090-4

    Article  Google Scholar 

  • Jaupart C, Allègre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102:413–429. doi:10.1016/0012-821X(91)90032-D

    Article  Google Scholar 

  • Juhász Á (1987) Évmilliók emlékei (Souvenirs of millions of years). Gondolat, Budapest (in Hungarian)

    Google Scholar 

  • Karner FR, Halvorson DL (1989) Geology of the Devils Tower and Missouri Buttes region. In: Karner FR (ed) Devils Tower—Black Hills alkalic igneous rocks and general geology, field trip guidebook T131. American Geophysical Union, Washington, DC, pp 70–74

    Google Scholar 

  • Kattenhorn SA, Schaefer CJ (2008) Thermal–mechanical modeling of cooling history and fracture development in inflationary basalt lava flows. J Volcanol Geotherm Res 170:181–197

    Article  Google Scholar 

  • Kereszturi G, Nemeth K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201:227–240. doi:10.1016/j.jvolgeores.2010.08.018

    Article  Google Scholar 

  • Konrad J-M, Ayad R (1997) Desiccation of a sensitive clay: field experimental observations. Can Geotech J 34:929–942

    Google Scholar 

  • Kóthay K (2009) The evolution of alkali basaltic magma based on the study of silicate melt inclusions from Hegyestű and Haláp, Balaton Highland. Ph.D. thesis, Dept. of Petrology and Geochemistry, Eötvös Loránd University, Budapest, 1–164 (in Hungarian)

  • Long PE, Wood BJ (1986) Structures, textures and cooling histories of Columbia River basalt flows. Geol Soc Am Bull 97:1144–1155

    Article  Google Scholar 

  • Lore J, Gao H, Aydin A (2000) Viscoelastic thermal stress in cooling basalt flows. J Geophys Res 105:23695–23709

    Article  Google Scholar 

  • Lore J, Aydin A, Goodson K (2001) A deterministic methodology for prediction of fracture distribution in basaltic multiflows. J Geophys Res 106(B4):6447–6459

    Article  Google Scholar 

  • Mallett R (1875) On the origin and mechanism of production of the prismatic (or columnar) structure of basalt. Proc Roy Soc London 23:180–184

    Google Scholar 

  • Martin U, Németh K (2004) Mio/Pliocene phreatomagmatic volcanism in the Western Pannonian Basin. Geologica Hungarica Series Geologica 26, Budapest, 1–193, ISBN 963 671 238 7

  • Martin U, Németh K (2007) Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary. J Volcanol Geotherm Res 159:164–178. doi:10.1016/j.jvolgeores.2006.06.010

    Article  Google Scholar 

  • Martin U, Németh K, Auer A, Breitkreuz Ch, Csillag G (2002) Depositional record of a Pliocene nested multivent maar complex at Fekete hegy, Pannonian Basin, western Hungary. Geologica Carpathica 53: Proceedings of XVII. Congress of Carpathian–Balkan Geological Association, Bratislava, Sept. 1–4th, 2002

  • Maurizot-Blanc C (1974) Etude des formations volcaniques de la cuvette de Murat et de la vallée de la Chevade. Etude pétrographique et pétrochimique des basaltes miocènes et pliocènes de la planèze de Saint-Flour (Cantal). Ph.D. thesis, University of Grenoble, Grenoble, 1–211 (in French)

  • Mergoil J, Boivin P (1993) Le Velay. Son volcanisme et les formations associées. Notice de la carte à 1/100 000. Géologie de la France 3:3–96 (in French)

    Google Scholar 

  • Michon L, Merle O (2001) The evolution of the Massif Central rift: spatio-temporal distribution of the volcanism. Bull Soc Géol France 172:201–211

    Article  Google Scholar 

  • Mossand P (1983) Le volcanisme anté- et syn-caldeira des Monts-Dore (Massif Central Français). Implications géothermiques. Ph.D. thesis, University Blaise Pascal, Clermont-Ferrand, 1–197 (in French)

  • Müller G (1998) Starch columns: analog model for basalt columns. J Geophys Res 103:15239–15253

    Article  Google Scholar 

  • Murase T, McBirney AR (1973) Properties of some common igneous rocks and their melts at high temperatures. Geol Soc Am Bull 84:3563–3592

    Article  Google Scholar 

  • Mysen BO (1988) Structure and properties of silicate melts. Developments in geochemistry 4. Elsevier, Amsterdam, pp 1–368

    Google Scholar 

  • Nemeth K, Martin U (1998) Groundwater and gas rich magma controlled phreatomagmatic (maar/diatreme) volcanism in the Balaton Highland Volcanic Field, Pannonian Basin, Hungary. IAVCEI 98 Congress, Cape Town, Abstract book p. 43

  • Németh K, Martin U (2007) Shallow sill and dyke complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in “soft-rock” environment. J Volcanol Geotherm Res 159:138–152. doi:10.1016/j.jvolgeores.2006.06.014

    Article  Google Scholar 

  • O’Reilly JP (1879) Explanatory notes and discussion on the nature of the prismatic forms of a group of columnar basalts, Giant’s Causeway. Trans R Irish Acad 26:641–728

    Google Scholar 

  • Peck DL, Minakami T (1968) The formation of columnar joints in the upper part of Kilauean lava lakes. Hawaii Geol Soc Am Bull 79:1151–1166

    Article  Google Scholar 

  • Prakfalvi P (2002) A béri hajlott andezitoszlopok. (The bent andesite columns of Bér.) Polár Stúdió, Salgótarján, 1–20 (in Hungarian)

  • Raspe RE (1776) An account of some German volcanos, and their productions. With a new hypothesis of the prismatic basaltes; established upon facts. Being an essay of physical geography for philosophers and miners. Published as supplementary to Sir William Hamilton’s observations on the Italian volcanos. Lockyer Davis, London, pp 1–140

  • Ryan MP, Sammis CG (1978) Cyclic fracture mechanisms in cooling basalt. Geol Soc Am Bull 89:1295–1308

    Article  Google Scholar 

  • Ryan MP, Sammis CG (1981) The glass transition in basalt. J Geophys Res 86:9519–9535

    Article  Google Scholar 

  • Saemundsson K (1970) Interglacial lava flows in the lowlands of Southern Iceland and the problem of two-tiered columnar jointing. Jökull 20:62–77

    Google Scholar 

  • Saemundsson K (1986) Subaerial volcanism in the western N. Atlantic. In: Vogt PR, Tucholke BE (eds) The geology of North America, vol. M: the western N. Atlantic region. Geological Society of America, Boulder, pp 69–86

    Google Scholar 

  • Schmincke HU (2004) Volcanism. Springer, Heidelberg, pp 1–324

    Book  Google Scholar 

  • Schultz RA (1995) Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mech Rock Engng 28:1–15

    Article  Google Scholar 

  • Sigmarsson O (2007) Origin of Icelandic basalts: a review of their petrology and geochemistry. J Geodynamics 43:87–100

    Article  Google Scholar 

  • Sigvaldason GE (1974) Basalts from the centre of the assumed Icelandic mantle plume. J Petrol 15:497–524

    Google Scholar 

  • Sosman RB (1916) Types of prismatic structures in igneous rocks. J Geol 24:215–234

    Article  Google Scholar 

  • Spörli KB, Rowland JV (2006) ‘Column on column’ structures as indicators of lava/ice interaction, Ruapehu andesite volcano, New Zealand. J Volcanol Geotherm Res 157:294–310. doi:10.1016/j.jvolgeores.2006.04.004

    Article  Google Scholar 

  • Spry AH (1962) The origin of columnar jointing, particularly in basalt flows. J Geol Soc Aust 8:191–216

    Article  Google Scholar 

  • Spry AH, Solomon M (1964) Columnar buchites at Apsley, Tasmania. Quart J Geol Soc 120:519–544. doi:10.1144/gsjgs.120.1.0519

    Article  Google Scholar 

  • Tardy J, Barczi A, Brezsnyánszky K, Császár G, Eszterhás I, Harangi Sz, Hámor G, Izsó I, Kordos L, Prakfalvi P, Szarvas I (2009) Novohrad-Nográd Geopark, Geology I. Enclosure to the application dossier for nomination as a European Geopark. http://ipolytarnoc.kvvm.hu/uploads/File/pdf/NNG_Enclosure_5.pdf. Cited on 21 Sep 2009

  • Thorarinsson S (1981) Miscellanea from excursions through south Iceland. Jökull 31:65–81 (in Icelandic)

    Google Scholar 

  • Tomkeieff SI (1940) The basalt lavas of the Giant’s Causeway district of Northern Ireland. Bull Volcanol 6:89–146

    Article  Google Scholar 

  • Toramaru A, Matsumoto T (2004) Columnar joint morphology and cooling rate: a starch–water mixture experiment. J Geophys Res 109:B02205. doi:10.1029/2003JB002686

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge Univ. Press, Cambridge, pp 1–456

    Google Scholar 

  • Varet J (1967) Les trachytes et les phonolites du Cantal Septentrional. Ph.D. thesis, Université de Paris, Faculté des Sciences d’Orsay, Orsay, 1–195 (in French)

  • Varet J (1971) Structure et mise an place des massifs phonolitiques du Cantal (Auvergne, France). Geol Rundschau 60(3):948–970

    Article  Google Scholar 

  • Varet J (1975) A propos des phonolites de Bort (Corrèze). Compte Rendu Somm Soc Géol France 17–4:99–101 (in French)

    Google Scholar 

  • Vink GE (1984) A hotspot model for Iceland and the Voring Plateau. J Geophys Res B 89:9949–9959

    Article  Google Scholar 

  • Walker GPL (1967) Thickness and viscosity of Etnean lavas. Nature 213:484–485

    Article  Google Scholar 

  • Walker GPL (1973) Lengths of lava flows. Phil Trans R Soc Lond A 274:107–118

    Article  Google Scholar 

  • Wijbrans J, Németh K, Martin U, Balogh K (2007) 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J Volcanol Geotherm Res 164:193–204. doi:10.1016/j.jvolgeores.2007.05.009

    Article  Google Scholar 

  • Woodworth JB (1896) On the fracture system of joints, with remarks on certain great fractures. Proc Boston Soc Nat Hist 27:163–184

    Google Scholar 

  • Zarzycki J (1982) Les verres et l’état vitreux. Masson, Paris, pp 1–391 (in French)

    Google Scholar 

Download references

Acknowledgements

We greatly thank the reviewer Károly Németh and the editor James White for their constructive comments and support; the manuscript has much benefited from their reviews. We acknowledge Dan Morgan, Csaba Szabó and Anita Grunder for interesting discussions and inputs. We thank Klára Kóthay for providing major-element composition data from her Ph.D. before publication. We greatly thank Sándor Takács (Szilváskő) and Károly Kuris (Uzsa) for their guidance and their hospitality, as well as József Medve (Szanda), István Perger (Haláp, Hajagos) and the Balaton Uplands National Park (Hegyestű) for providing access to and information on different sites. We also thank Béla Runtág, Paul and Marie-Thérèse Médard, Jurij Ponomarenko and the Department of Geophysics at Eötvös University Budapest for their practical help. We finally thank Lydia Zehnder for her assistance and help in performing XRF analyses and Thomas Good for his help in sample preparation. The fieldwork in France and Hungary was supported by the William B. and Elizabeth Behr Agocs Geophysical Research Fund Award of G.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Hetényi.

Additional information

Editorial responsibility: D.B. Dingwell

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Geographical location of columnar jointing sites (in Google Earth format). (KMZ 2.86 kb)

Appendix: Comparable cooling regimes for intrusive and extrusive cases: an equivalent thickness ratio

Appendix: Comparable cooling regimes for intrusive and extrusive cases: an equivalent thickness ratio

With the objective of comparing the thickness of a simple intrusive (dyke) and extrusive (flow) igneous body having the same cooling regime, we make the following assumptions:

  • We place ourselves in a 1D problem along the y-axis (parallel to the temperature gradient).

  • Host rock and magma have the same thermal diffusivity κ that does not vary with temperature T.

  • The host rock temperature is initially set at 0°C (no preheating of the rock by previous lava).

  • There is no latent heat of crystallisation due to solidification.

  • The magma is suddenly emplaced at temperature T 0, both in the intrusive and the extrusive case.

For an intrusion of thickness d i located between −d i/2 < y < d i/2 and cooling to both sides (country rock in |y| > d i/2), the temperature evolution as a function of depth y and time t is given by Carslaw and Jaeger (1959, p. 54):

$$ T\left( {y,t} \right) = \frac{1}{2}{T_0}\left[ {{\text{erf}}\left( {\frac{{\frac{{{d_{\text{i}}}}}{2} - y}}{{2\sqrt {{\kappa t}} }}} \right) + {\text{erf}}\left( {\frac{{\frac{{{d_{\text{i}}}}}{2} + y}}{{2\sqrt {{\kappa t}} }}} \right)} \right] $$
(4)

In the extrusive case, the upper surface of the magma is maintained at 0°C (infinite heat transfer to the air). The lava flow of thickness d e is located in the region 0 < y < d e and cools to the host rock located y > d e. With these boundary conditions, the temperature evolution is given by Carslaw and Jaeger (1959, p. 62):

$$ T\left( {y,t} \right) = \frac{1}{2}{T_0}\left[ {2{\text{erf}}\left( {\frac{y}{{2\sqrt {{\kappa t}} }}} \right) - {\text{erf}}\left( {\frac{{y - {d_{\text{e}}}}}{{2\sqrt {{\kappa t}} }}} \right) - {\text{erf}}\left( {\frac{{y + {d_{\text{e}}}}}{{2\sqrt {{\kappa t}} }}} \right)} \right] $$
(5)

With a change of variable from t to τ = κ · t/d 2 and the notation y* = y/d (where d is, respectively, d i and d e for the above cases), the above equations can be written as

$$ {\Theta_{\text{i}}}\left( {{y^{ \star }},\tau } \right) = \frac{{T\left( {\frac{y}{{{d_{\text{i}}}}},\tau } \right)}}{{{T_0}}} = \frac{1}{2}\left[ {{\text{erf}}\left( {\frac{{\frac{1}{2} - {y^{ \star }}}}{{2{\tau^{{\frac{1}{2}}}}}}} \right) + {\text{erf}}\left( {\frac{{\frac{1}{2} + {y^{ \star }}}}{{2{\tau^{{\frac{1}{2}}}}}}} \right)} \right] $$
(6)

and

$$ {\Theta_{\text{e}}}\left( {{y^{ \star }},\tau } \right) = \frac{{T\left( {\frac{y}{{{d_{\text{e}}}}},\tau } \right)}}{{{T_0}}} = \frac{1}{2}\left[ {{\text{2erf}}\left( {\frac{{{y^{ \star }}}}{{2{\tau^{{\frac{1}{2}}}}}}} \right) - {\text{erf}}\left( {\frac{{{y^{ \star }} - 1}}{{2{\tau^{{\frac{1}{2}}}}}}} \right) - {\text{erf}}\left( {\frac{{{y^{ \star }} + 1}}{{2{\tau^{{\frac{1}{2}}}}}}} \right)} \right] $$
(7)

We then define the remaining heat as the ratio between mean temperature of the emplaced lava body and the initial temperature T 0. This leads for the intrusive case to

$$ {E_{\text{i}}}\left( \tau \right) = \int_{{ - 0.5}}^{{0.5}} {{\Theta_{\text{i}}}\left( {{y^{ \star }},\tau } \right){\rm d} {y^{ \star }}} $$
(8)

and for the extrusive case to

$$ {E_{\text{e}}}\left( \tau \right) = \int_0^1 {{\Theta_{\text{e}}}\left( {{y^{ \star }},\tau } \right){\rm d} {y^{ \star }}} $$
(9)

We numerically integrate Eqs. 8 and 9 and investigate for a given percentage of remaining heat the ratio of extrusive thickness d e to intrusive thickness d i for which the cooling rate is the same in both magmas bodies at time t:

$$ {E_{\text{i}}}\left( {{\tau_{\text{i}}}} \right) = \in = {E_{\text{e}}}\left( {{\tau_{\text{e}}}} \right), $$
(10)
$$ {E_{\text{i}}}\left( {t\frac{\kappa }{{{d_{\text{i}}}{{\left( { \in, t} \right)}^2}}}} \right) = {E_{\text{e}}}\left( {t\frac{\kappa }{{{d_{\text{e}}}{{\left( { \in, t} \right)}^2}}}} \right) $$
(11)

The result is shown in Fig. 12. We can first see that an extrusion is always required to be thicker than an intrusion cooling at the same rate, whatever the amount of remaining heat in the lava, because a lava flow always cools faster than an intrusive magma body. Second, the smaller the remaining heat in the lava, the higher extrusive/intrusive thickness ratio is required (the more rapid the cooling of a flow compared to a dyke).

Fig. 12
figure 12

Thickness ratio of igneous bodies having the same cooling rate, as a function of the remaining heat within the body. See text for details

As the temperature at emplacement T 0 is near or below the liquidus (in the order of 1,000–1,200°C) and jointing occurs near the glass transition temperature T G (in the order of 650–950°C with the rock compositions in this paper and using the model by Giordano et al. (2008)), the remaining heat exceeds 50% at that emplacement when jointing takes place. Therefore, when comparing extrusive and intrusive bodies having the same cooling rate, a realistic number with which one should divide the thickness of a dyke (sill) to compare it to that of a free flow is 1.5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetényi, G., Taisne, B., Garel, F. et al. Scales of columnar jointing in igneous rocks: field measurements and controlling factors. Bull Volcanol 74, 457–482 (2012). https://doi.org/10.1007/s00445-011-0534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0534-4

Keywords

Navigation