Skip to main content
Log in

Cole–Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole–Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole–Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole–Cole and PLS models, the latter technique giving more satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vojinovic V, Cabral JMS, Fonseca LP (2006) Real-time bioprocess monitoring. Part I: In situ sensors. Sensors and Actuators B Chemical 114(2):1083–1091

    Article  CAS  Google Scholar 

  2. Schügerl K (2001) Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J Biotechnol 85(2):149–173

    Article  Google Scholar 

  3. von Stockar U, Valentinotti S, Marison I, Cannizzaro C, Herwig C (2003) Know-how and know-why in biochemical engineering. Biotechnol Adv 21(5):417–430

    Article  CAS  Google Scholar 

  4. Olsson L, Nielsen J (1997) On-line and in situ monitoring of biomass in submerged cultivations. Trends Biotechnol 15(12):517–522

    Article  CAS  Google Scholar 

  5. Camisard V, Brienne JP, Baussart H, Hammann J, Suhr H (2002) Inline characterization of cell concentration and cell volume in agitated bioreactors using in situ microscopy: Application to volume variation induced by osmotic stress. Biotechnol Bioeng 78(1):73–80

    Article  CAS  Google Scholar 

  6. Konstantinov K, Chuppa S, Sajan E, Tsai Y, Yoon S, Golini F (1994) Real-time biomass-concentration monitoring in animal-cell cultures. Trends Biotechnol 12(8):324–333

    Article  CAS  Google Scholar 

  7. Surribas A, Montesinos JL, Valero FF (2006) Biomass estimation using fluorescence measurements in Pichia pastoris bioprocess. J Chem Technol Biotechnol 81(1):23–28

    Article  CAS  Google Scholar 

  8. Kell DB, Markx GH, Davey CL, Todd RW (1990) Real-time monitoring of cellular biomass-methods and applications. Trac- Trends Analyt Chem 9(6):190–194

    Article  Google Scholar 

  9. Tamburini E, Vaccari G, Tosi S, Trilli A (2003) Near-infrared spectroscopy: A tool for monitoring submerged fermentation processes using an immersion optical-fiber probe. Appl Spectrosc 57(2):132–138

    Article  CAS  Google Scholar 

  10. Arnold SA, Gaensakoo R, Harvey LM, McNeil B (2002) Use of at-line and in-situ near-infrared spectroscopy to monitor biomass in an industrial fed-batch Escherichia coli process. Biotechnol Bioeng 80(4):405–413

    Article  CAS  Google Scholar 

  11. Hall JW, McNeil B, Rollins MJ, Draper I, Thompson BG, Macaloney G (1996) Near-infrared spectroscopic determination of acetate, ammonium, biomass, and glycerol in an industrial Escherichia coli fermentation. Appl Spectrosc 50(1):102–108

    Article  CAS  Google Scholar 

  12. Joeris K, Frerichs JG, Konstantinov K, Scheper T (2002) In-situ microscopy: online process monitoring of mammalian cell cultures. Cytotechnology 38(1–2):129–134

    Article  CAS  Google Scholar 

  13. Markx GH, Davey CL (1999) The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme Microb Technol 25(3–5):161–171

    Article  CAS  Google Scholar 

  14. Mishima K, Mimura A, Takahara Y, Asami K, Hanai T (1991) On-line monitoring of cell concentrations by dielectric measurements. J. Ferment Bioeng 72(4):291–295

    Article  CAS  Google Scholar 

  15. Yardley YE, Kell DB, Barrett J, Davey CL (2000) On-line, real-time measurements of cellular biomass using dielectric spectroscopy. Biotechnology & Genetic Engineering Reviews, vol 17. Intercept Ltd. Scientific Technical & Medical Publishers, Andover, pp 3–35

    Google Scholar 

  16. Davey CL, Davey HM, Kell DB, Todd RW (1993) Introduction to the dielectric estimation of cellular biomass in real-time, with special emphasis on measurements at high-volume fractions. Anal Chim Acta 279(1):155–161

    Article  Google Scholar 

  17. Harris CM, Todd RW, Bungard SJ, Lovitt RW, Morris JG, Kell DB (1987) Dielectric permittivity of microbial suspensions at radio frequencies: a novel method for the real-time estimation of microbial biomass. Enzyme Microb Technol 9(3):181–186

    Article  CAS  Google Scholar 

  18. Cannizzaro C, Gugerli R, Marison I, von Stockar U (2003) On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol Bioeng 84(5):597–610

    Article  CAS  Google Scholar 

  19. Siano SA (1997) Biomass measurement by inductive permittivity. Biotechnol Bioeng 55(2):289–304

    Article  CAS  Google Scholar 

  20. Ducommun P, Kadouri A, von Stockar U, Marison IW (2002) On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol Bioeng 77(3):316–323

    Article  CAS  Google Scholar 

  21. Cerckel I, Garcia A, Degouys V, Dubois D, Fabry L, Miller AOA (1993) Dielectric-spectroscopy of mammalian-cells .1. evaluation of the biomass of hela-cell and cho-cell in suspension by low-frequency dielectric-spectroscopy. Cytotechnology 13(3):185–193

    Article  CAS  Google Scholar 

  22. Davey CL, Kell DB, Kemp RB, Meredith RWJ (1988) On the audio- and radio-frequency dielectric behaviour of anchorage-independent, mouse L929-derived LS fibroblasts. Bioelectrochem Bioenerg 20(1–3):83–98

    Article  Google Scholar 

  23. Cannizzaro C (2002) Spectroscopic monitoring of bioprocesses: A study of carotenoid production by Phaffia Rhodozyma Yeast [PhD thesis]. Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

    Google Scholar 

  24. November EJ, Van Impe JF (2000) Evaluation of on-line viable biomass measurements during fermentations of Candida utilis. Bioprocess Eng 23(5):473–477

    Article  CAS  Google Scholar 

  25. Asami K, Yonezawa T (1996) Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz. Biophys J 71(4):2192–2200

    Article  CAS  Google Scholar 

  26. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(4):341–351

    Article  CAS  Google Scholar 

  27. Debye P (1929) Polar Molecules. The Chemical Catalog Company Inc, New York

    Google Scholar 

  28. Markx GH, Davey CL, Kell DB (1991) To what extent is the magnitude of the cole–cole-alpha of the beta-dielectric dispersion of cell-suspensions explicable in terms of the cell-size distribution. Bioelectrochem Bioenerg 25(2):195–211

    Article  Google Scholar 

  29. Ivorra A, Genesca M, Sola A, Palacios L, Villa R, Hotter G, Aguilo J (2005) Bioimpedance dispersion width as a parameter to monitor living tissues. Physiol Meas 26(2):S165–S173

    Article  Google Scholar 

  30. Kell DB, Harris CM (1985) On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 1. theory and overview. Eur Biophys J 12(4):181–197

    Article  CAS  Google Scholar 

  31. Harris CM, Kell DB (1985) On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 2. experiments with microbial-cells, protoplasts and membrane-vesicles. Eur Biophys J 13(1):11–24

    Article  CAS  Google Scholar 

  32. Ryabov YE, Feldman Y (2002) Novel approach to the analysis of the non-Debye dielectric spectrum broadening. Physica a-Stat Mech Appl 314(1–4):370–378

    Article  CAS  Google Scholar 

  33. Currie DJ, Lee MH, Todd RW (2006) Prediction of physical properties of yeast cell suspensions using dielectric spectroscopy. conference on electrical insulation and dielectric phenomena; pp 672–675.

  34. Davey CL, Markx GH, Kell DB (1993) On the dielectric method of monitoring cellular viability. Pure Appl Chem 65(9):1921–1926

    Article  CAS  Google Scholar 

  35. Davey CL (1993) The theory of the b-dielectric dispersion and its use in the estimation of cellular biomass. Aber Instruments Ltd, Aberystwyth, UK

    Google Scholar 

  36. Davey CL, Davey HM, Kell DB (1992) On the dielectric properties of cell suspensions at high-volume fractions. Bioelectrochem Bioenerg 28(1–2):319–340

    Article  Google Scholar 

  37. Aber-Instruments(2005). Biomass Monitor 210 User Manual. Aberystwyth, UK

  38. Brereton RG (2000) Introduction to multivariate calibration in analytical chemistry. Analyst 125(11):2125–2154

    Article  CAS  Google Scholar 

  39. Beebe KR, Kowalski BR (1987) An introduction to multivariate calibration and analysis. Anal Chem 59(17):A1007–A1017

    Article  Google Scholar 

  40. Brereton RG (2007) Applied chemometrics for scientists. Wiley, Chichester, UK

    Google Scholar 

  41. Haaland DM, Thomas EV (1988) Partial least-squares methods for spectral analyses. 1. relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60(11):1193–1202

    Article  CAS  Google Scholar 

  42. Yardley JE, Todd R, Nicholson DJ, Barrett J, Kell DB, Davey CL (2000) Correction of the influence of baseline artefacts and electrode polarisation on dielectric spectra. Bioelectrochemistry 51(1):53–65

    Article  CAS  Google Scholar 

  43. Verduyn C, Postma E, Scheffers WA, Vandijken JP (1992) Effect of benzoic-acid on metabolic fluxes in yeasts-a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8(7):501–517

    Article  CAS  Google Scholar 

  44. Cannizzaro C, Valentinotti S, von Stockar U (2004) Control of yeast fed-batch process through regulation of extracellular ethanol concentration. Bioprocess Biosyst Eng 26(6):377–383

    Article  CAS  Google Scholar 

  45. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  Google Scholar 

Download references

Acknowledgments

The Swiss National Science Foundation is greatly acknowledged for financial support of this work. Special thanks to Jonas Schenk for help with the LabView interface and data acquisition systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs von Stockar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabros, M., Dennewald, D., Currie, D.J. et al. Cole–Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass. Bioprocess Biosyst Eng 32, 161–173 (2009). https://doi.org/10.1007/s00449-008-0234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0234-4

Keywords

Navigation