Skip to main content
Log in

Study on immunosensor based on gold nanoparticles/chitosan and MnO2 nanoparticles composite membrane/Prussian blue modified gold electrode

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A novel and convenient immunosensor, based on the electrostatic adsorption characteristics between the positively charged MnO2 nanoparticles (nano-MnO2) and chitosan (CS) composite membrane (nano-MnO2 + CS) and the negatively charged prussian blue (PB), was prepared for the detection of carcinoembryonic antigen (CEA). Firstly, PB was electro-deposited on the surface of the gold electrode in the constant potential, and then nano-MnO2 + CS was adsorbed onto PB-modified electrode surface. Subsequently, Gold nanoparticles (nano-Au) were electro-deposited on the nano-MnO2 + CS-modified electrode to immobilize antibody CEA (anti-CEA). Finally, bovine serum albumin (BSA) was employed to block sites against nonspecific binding. In our study, cyclic voltammetry (CV) and scanning electron microscopy (SEM) were used to characterize the fabricated process of the immunosensor. The immunosensor put up a rapid response time, high sensitivity and stability. Under the optimized conditions, cyclic voltammograms(CVs) determination of CEA displayed a broader linear response to CEA in two ranges, from 0.25 to 8.0 ng/mL, and from 8.0 to 100 ng/mL, with a relative low-detection limit of 0.083 ng/mL at three times the background and noise. The originality of the preparation of the immunosensor lies in not only using the synergistic effect of two kinds of nanomaterials (nano-MnO2 and nano-Au) to immobilize anti-CEA, but also using nano-MnO2 + CS to furnish a media transferring electron path. What is more, the researched methodology was efficient and potentially attractive for clinical immunoassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Du D, Yan F, Liu SL, Ju HX (2003) Immunological assay for carbohydrate antigen 19-9 using an electrochemical immunosensor and antigen immobilization in titania sol-gel matrix. J Immunol Methods 283:267

    Article  Google Scholar 

  2. Marquette CA, Blum LJ (2006) State of the art and recent advances in immunoanalytical systems. Biosens Bioelectron 21:1424

    Article  CAS  Google Scholar 

  3. Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors—principles and applications to clinical chemistry. Clin Chim Acta 314:1

    Article  CAS  Google Scholar 

  4. Singh S (2007) Sensors—an effective approach for detection of explosives. J Hazard Mater 144:15

    Article  CAS  Google Scholar 

  5. Wu J, Zhang ZJ, Fu ZF, Ju HX (2007) A disposable two-through put electrochemical immunosensor chip for simultaneous multianalysis determination of tumor markers. Biosens Bioelectron 23:114

    Article  CAS  Google Scholar 

  6. Tang H, Chen JH, Nie LH, Yao SZ, Kuang YF (2007) Electrochemical oxidation of glutathione at well-aligned carbon nanotube array electrode. Electrochim Acta 52:3518

    Article  Google Scholar 

  7. Yuan R, Zhuo Y, Chai YQ, Zhang Y, Sun AL (2007) Determination of carcinoembryonic antigen using a novel amperometric enzyme-electrode based on layer-by-layer assembly of gold nanoparticles and thionine. Sci China Ser B 50:97

    Article  CAS  Google Scholar 

  8. Li N, Yuan R, Chai YQ, Chen SH, An HZ, Li WJ (2007) New antibody immobilization strategy based on gold nanoparticles and azure I/mutil-walled carbon nanotube composite membranes for an amperometric enzyme immunosensor. J Phys Chem C 111:8443

    Article  CAS  Google Scholar 

  9. Merkoci A (2007) Electrochemical biosensing with nanoparticles. FEBS J 274:310

    Article  CAS  Google Scholar 

  10. Choi JW, Oh BK, Kim YK et al (2007) Nanotechnology in biodevices. J Microbiol Biotechnol 17:5

    CAS  Google Scholar 

  11. Veetil JV, Ye KM (2007) Development of immunosensors using carbon nanotubes. Biotechnol Prog 23:511

    Article  Google Scholar 

  12. Wu LN, Yan F, Ju HX (2007) An amperometric immunosensor for separation-free immunoassay of CA125 based on its covalent immobilization coupled with thionine on carbon nanofiber. J Immunol Methods 322:12

    Article  CAS  Google Scholar 

  13. Bourgeat-Lami EJ (2002) Organic-inorganic nanostructured colloids. J Nanosci Nanotechnol 2:1

    Article  CAS  Google Scholar 

  14. Xiao TD, Strutt PR, Benaissa M, Chen H, Kear BH (1998) Synthesis of high active site density nanofibrous MnO2-base materials with enhanced permeabilities. Nanostruct Mater 10:1051

    Article  CAS  Google Scholar 

  15. Veerapur RS, Gudasi KB, Aminabhavi TM (2007) Pervaporation dehydration of isopropanol using blend membranes of chitosan and hydroxypropyl cellulose. J Memb Sci 304:102

    Article  CAS  Google Scholar 

  16. Luo XL, Xu JJ, Zhao W, Chen HY (2004) Ascorbic acid sensor based on ion-sensitive field-effect transistor modified with MnO2 nanoparticles. Anal Chim Acta 512:57

    Article  CAS  Google Scholar 

  17. Wang K, Xu JJ, Chen HY (2006) Biocomposite of cobalt phthalocyanine and lactate oxidase for lactate biosensing with MnO2 nanoparticles as an eliminator of ascorbic acid interference. Sens Actuators B Chem 114:1052

    Article  Google Scholar 

  18. Xu JJ, Luo XL, Du X, Chen HY (2004) Application of MnO2 nanoparticles as an eliminator of ascorbate interference to amperometric glucose biosensors. Electrochem Commun 6:1169

    Article  CAS  Google Scholar 

  19. Zhuo Y, Yuan R, Chai YQ, Zhang Y, Li XL, Wang N, Zhu Q (2006) Amperometric enzyme immunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on Nafion modified electrode surface for a-1-fetoprotein determinations. Sens Actuators B Chem 114:631

    Article  Google Scholar 

  20. Cao SR, Yuan R, Chai YQ, Zhang LY, Li XL, Gao FX (2007) A mediator-free amperometric hydrogen peroxide biosensor based on HRP immobilized on anano-Au/poly2, 6-pyridinediamine-coated electrode. Bioprocess Biosyst Eng 30:71

    Article  CAS  Google Scholar 

  21. Zhu Q, Yuan R, Chai YQ, Wang N, Zhuo Y, Zhang Y, Li XL (2006) A new potentiometric immunosensor for determination of α-fetoprotein based on improved gelatin–silver complex film. Electrochim Acta 51:3763

    Article  Google Scholar 

  22. Shi YT, Yuan R, Chai YQ (2007) Development of an amperometric immunosensor based on TiO2 nanoparticles and gold nanoparticles. Electrochim Acta 52:3518

    Article  CAS  Google Scholar 

  23. Yuan YR, Yuan R, Chai YQ, Zhuo Y, Shi YT, He XL, Miao XM (2007) A reagentless amperometric immunosensor for a-fetoprotein based on gold nanoparticles/TiO2 colloids/Prussian blue modified platinum electrode. Electroanalysis 13:1402

    Article  Google Scholar 

  24. Tang DP, Yuan R, Chai YQ (2006) Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay. J Phys Chem B 110:11640

    Article  CAS  Google Scholar 

  25. Prati L, Villa A, Porta F, Wang D, Su DS (2007) Single-phase gold/palladium catalyst: The nature of synergistic effect. Catal Today 122:386

    Article  CAS  Google Scholar 

  26. Du Y, Luo XL, Xu JJ, Chen HY (2007) A simple method to fabricate chitosan gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry 70:342

    Article  CAS  Google Scholar 

  27. Bai YH, Du Y, Xu JJ, Chen HY (2007) Choline biosensor based on a bielectrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochem Commun 9:2611

    Article  CAS  Google Scholar 

  28. Mattos IL, Gorton L, Laurell T, Malinauskas A, Karyakin AA (2000) Development of biosensors based on hexacyanoferrates. Talanta 52:791

    Article  Google Scholar 

  29. He XL, Yuan R, Chai YQ, Zhuo Y, Shi YT (2007) A new antibody immobil- ization strategy based on electrodeposition of gold nanoparticles and prussian blue for label-free amperometric immunosensor. Biotechnol Lett 29:149

    Article  CAS  Google Scholar 

  30. Garjonyte R, Malinauskas A (1999) Operational stability of amperometric hydrogen peroxide sensors based on ferrous and copper hexacyanferrates. Sens Actuators B Chem 56:93

    Article  Google Scholar 

  31. Tang DP, Yuan R, Chai YQ (2006) Novel immunoassay for carcinoembryonic antigen based on protein A-conjugated immunosensor chip by surface plasmon resonance and cyclic voltammetry. Bioproc Biosyst Eng 28:315

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20675064), the Natural Science Foundation of Chongqing City (CSTC-2004BB4149 and 2005BB4100), the Chinese Education Ministry Foundation for Excellent Young Teachers (2002-40), and the High Technology Project Foundation of Southwest University (XSGX 02), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, S., Yuan, R., Chai, Y. et al. Study on immunosensor based on gold nanoparticles/chitosan and MnO2 nanoparticles composite membrane/Prussian blue modified gold electrode. Bioprocess Biosyst Eng 32, 407–414 (2009). https://doi.org/10.1007/s00449-008-0260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0260-2

Keywords

Navigation